{"title":"背景规规场稳定的拓扑孤子与孤子-反孤子不对称","authors":"Yuki Amari, Minoru Eto, Muneto Nitta","doi":"10.1007/JHEP11(2024)127","DOIUrl":null,"url":null,"abstract":"<p>We study topological lumps supported by the second homotopy group <i>π</i><sub>2</sub>(<i>S</i><sup>2</sup>) ⋍ <i>ℤ</i> in a gauged <i>O</i>(3) model without any potential term coupled with a (non)dynamical U(1) gauge field. It is known that gauged-lumps are stable with an easy-plane potential term but are unstable to expand if the model has no potential term. In this paper, we find that these gauged lumps without a potential term can be made stable by putting them in a uniform magnetic field, irrespective of whether the gauge field is dynamical or not. In the case of the non-dynamical gauge field, only either of lumps or anti-lumps stably exists depending on the sign of the background magnetic field, and the other is unstable to shrink to be singular. We also construct coaxial multiple lumps whose size and mass exhibit a behaviour of droplets. In the case of the dynamical gauge field, both the lumps and anti-lumps stably exist with different masses; the lighter (heavier) one corresponds to the (un)stable one in the case of the nondynamical gauge field. We find that a lump behaves as a superconducting ring and traps magnetic field in its inside, with the total magnetic field reduced from the background magnetic field.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)127.pdf","citationCount":"0","resultStr":"{\"title\":\"Topological solitons stabilized by a background gauge field and soliton-anti-soliton asymmetry\",\"authors\":\"Yuki Amari, Minoru Eto, Muneto Nitta\",\"doi\":\"10.1007/JHEP11(2024)127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study topological lumps supported by the second homotopy group <i>π</i><sub>2</sub>(<i>S</i><sup>2</sup>) ⋍ <i>ℤ</i> in a gauged <i>O</i>(3) model without any potential term coupled with a (non)dynamical U(1) gauge field. It is known that gauged-lumps are stable with an easy-plane potential term but are unstable to expand if the model has no potential term. In this paper, we find that these gauged lumps without a potential term can be made stable by putting them in a uniform magnetic field, irrespective of whether the gauge field is dynamical or not. In the case of the non-dynamical gauge field, only either of lumps or anti-lumps stably exists depending on the sign of the background magnetic field, and the other is unstable to shrink to be singular. We also construct coaxial multiple lumps whose size and mass exhibit a behaviour of droplets. In the case of the dynamical gauge field, both the lumps and anti-lumps stably exist with different masses; the lighter (heavier) one corresponds to the (un)stable one in the case of the nondynamical gauge field. We find that a lump behaves as a superconducting ring and traps magnetic field in its inside, with the total magnetic field reduced from the background magnetic field.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2024 11\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)127.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP11(2024)127\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)127","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Topological solitons stabilized by a background gauge field and soliton-anti-soliton asymmetry
We study topological lumps supported by the second homotopy group π2(S2) ⋍ ℤ in a gauged O(3) model without any potential term coupled with a (non)dynamical U(1) gauge field. It is known that gauged-lumps are stable with an easy-plane potential term but are unstable to expand if the model has no potential term. In this paper, we find that these gauged lumps without a potential term can be made stable by putting them in a uniform magnetic field, irrespective of whether the gauge field is dynamical or not. In the case of the non-dynamical gauge field, only either of lumps or anti-lumps stably exists depending on the sign of the background magnetic field, and the other is unstable to shrink to be singular. We also construct coaxial multiple lumps whose size and mass exhibit a behaviour of droplets. In the case of the dynamical gauge field, both the lumps and anti-lumps stably exist with different masses; the lighter (heavier) one corresponds to the (un)stable one in the case of the nondynamical gauge field. We find that a lump behaves as a superconducting ring and traps magnetic field in its inside, with the total magnetic field reduced from the background magnetic field.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).