通过原位固态核磁共振谱对沸石催化进行机理研究:进展与前景

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Chao Wang, Min Hu, Jun Xu, Feng Deng
{"title":"通过原位固态核磁共振谱对沸石催化进行机理研究:进展与前景","authors":"Chao Wang,&nbsp;Min Hu,&nbsp;Jun Xu,&nbsp;Feng Deng","doi":"10.1007/s11705-024-2505-2","DOIUrl":null,"url":null,"abstract":"<div><p>Zeolites, with their exquisite microporous frameworks and tailorable acidities, serve as ubiquitous catalysts across a diverse spectrum of industrial applications, ranging from petroleum and coal processing to sustainable chemistry and environmental remediation. Optimizing their performance hinges on a thorough understanding of the structure-performance relationship. <i>In situ</i> solid-state nuclear magnetic resonance spectroscopy has emerged as a critical tool, providing unparalleled atomic-level insights into both structure and dynamic aspects of zeolite-catalyzed reactions. Herein, we review recent progress in the development and application of the <i>in situ</i> solid-state nuclear magnetic resonance technique to zeolite catalysis. We first review the <i>in situ</i> nuclear magnetic resonance techniques used in zeolite-catalyzed reaction, including batch-like and continuous-flow reaction modes. The conditions and limitations for these techniques are thoroughly summarized. Subsequently, we review the applications of <i>in situ</i> nuclear magnetic resonance techniques in zeolite-catalyzed reaction, focusing on some important catalytic reactions like methanol-to-hydrocarbons, ethanol dehydration, alkane activation, and beyond. Emphasis is placed on the strategies of specific <i>in situ</i> nuclear magnetic resonance methodologies to tackle critical challenges encountered in these fields, such as probing intermediates and unraveling reaction mechanisms. Additionally, we discuss the burgeoning opportunities and prospective challenges associated with <i>in situ</i> nuclear magnetic resonance studies of zeolite-catalyzed processes.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects\",\"authors\":\"Chao Wang,&nbsp;Min Hu,&nbsp;Jun Xu,&nbsp;Feng Deng\",\"doi\":\"10.1007/s11705-024-2505-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zeolites, with their exquisite microporous frameworks and tailorable acidities, serve as ubiquitous catalysts across a diverse spectrum of industrial applications, ranging from petroleum and coal processing to sustainable chemistry and environmental remediation. Optimizing their performance hinges on a thorough understanding of the structure-performance relationship. <i>In situ</i> solid-state nuclear magnetic resonance spectroscopy has emerged as a critical tool, providing unparalleled atomic-level insights into both structure and dynamic aspects of zeolite-catalyzed reactions. Herein, we review recent progress in the development and application of the <i>in situ</i> solid-state nuclear magnetic resonance technique to zeolite catalysis. We first review the <i>in situ</i> nuclear magnetic resonance techniques used in zeolite-catalyzed reaction, including batch-like and continuous-flow reaction modes. The conditions and limitations for these techniques are thoroughly summarized. Subsequently, we review the applications of <i>in situ</i> nuclear magnetic resonance techniques in zeolite-catalyzed reaction, focusing on some important catalytic reactions like methanol-to-hydrocarbons, ethanol dehydration, alkane activation, and beyond. Emphasis is placed on the strategies of specific <i>in situ</i> nuclear magnetic resonance methodologies to tackle critical challenges encountered in these fields, such as probing intermediates and unraveling reaction mechanisms. Additionally, we discuss the burgeoning opportunities and prospective challenges associated with <i>in situ</i> nuclear magnetic resonance studies of zeolite-catalyzed processes.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2505-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2505-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

沸石具有精致的微孔框架和可定制的酸度,在石油和煤炭加工、可持续化学和环境修复等各种工业应用领域中充当着无处不在的催化剂。优化它们的性能取决于对结构-性能关系的透彻理解。原位固态核磁共振波谱已成为一种重要工具,可提供无与伦比的原子级洞察力,了解沸石催化反应的结构和动态方面。在此,我们回顾了沸石催化原位固态核磁共振技术的开发和应用方面的最新进展。我们首先回顾了用于沸石催化反应的原位核磁共振技术,包括间歇式和连续流反应模式。我们全面总结了这些技术的条件和限制。随后,我们回顾了原位核磁共振技术在沸石催化反应中的应用,重点是一些重要的催化反应,如甲醇制烃类、乙醇脱水、烷烃活化等。重点放在特定原位核磁共振方法的策略上,以应对这些领域遇到的关键挑战,如探测中间体和揭示反应机制。此外,我们还讨论了与沸石催化过程的原位核磁共振研究相关的新兴机遇和未来挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects

Zeolites, with their exquisite microporous frameworks and tailorable acidities, serve as ubiquitous catalysts across a diverse spectrum of industrial applications, ranging from petroleum and coal processing to sustainable chemistry and environmental remediation. Optimizing their performance hinges on a thorough understanding of the structure-performance relationship. In situ solid-state nuclear magnetic resonance spectroscopy has emerged as a critical tool, providing unparalleled atomic-level insights into both structure and dynamic aspects of zeolite-catalyzed reactions. Herein, we review recent progress in the development and application of the in situ solid-state nuclear magnetic resonance technique to zeolite catalysis. We first review the in situ nuclear magnetic resonance techniques used in zeolite-catalyzed reaction, including batch-like and continuous-flow reaction modes. The conditions and limitations for these techniques are thoroughly summarized. Subsequently, we review the applications of in situ nuclear magnetic resonance techniques in zeolite-catalyzed reaction, focusing on some important catalytic reactions like methanol-to-hydrocarbons, ethanol dehydration, alkane activation, and beyond. Emphasis is placed on the strategies of specific in situ nuclear magnetic resonance methodologies to tackle critical challenges encountered in these fields, such as probing intermediates and unraveling reaction mechanisms. Additionally, we discuss the burgeoning opportunities and prospective challenges associated with in situ nuclear magnetic resonance studies of zeolite-catalyzed processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信