Ming Yang, Zhengbing Xu, Cailiu Yin, Xinjiang Zhang, Minghao Zhang, Zheng Sun
{"title":"通过添加 Ag/La2O3 杂化物提高 W-Cu 复合材料的导电性和机械性能","authors":"Ming Yang, Zhengbing Xu, Cailiu Yin, Xinjiang Zhang, Minghao Zhang, Zheng Sun","doi":"10.1007/s10853-024-10400-5","DOIUrl":null,"url":null,"abstract":"<div><p>W–Cu composites with Ag/La<sub>2</sub>O<sub>3</sub> hybrid addition were prepared through pressure-free sintering at different sintering temperatures from 900 to 1200 °C. Microstructure, electrical conductivity and mechanical properties of W–Cu composites with additional Ag/La<sub>2</sub>O<sub>3</sub> hybrid were analyzed. Microstructural observation showed that Ag was partially solubilized into Cu to generate Cu–Ag solid solution during the sintering, while Ag aggregation and La<sub>2</sub>O<sub>3</sub> dispersion were found in the Cu matrix. The higher sintering temperature reduced the porosity of the sintered bulk composites. W–Cu composites with Ag/La<sub>2</sub>O<sub>3</sub> hybrid addition possessed the higher values of electrical conductivity, hardness and strength at each sintering temperature, and the optimum sintering temperature was 1100 °C, at which Ag/La<sub>2</sub>O<sub>3</sub> hybrid reached enhancement in properties comparing with W–Cu composites.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 44","pages":"20640 - 20656"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing electrical conductivity and mechanical properties of W–Cu composites with additional Ag/La2O3 hybrid\",\"authors\":\"Ming Yang, Zhengbing Xu, Cailiu Yin, Xinjiang Zhang, Minghao Zhang, Zheng Sun\",\"doi\":\"10.1007/s10853-024-10400-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>W–Cu composites with Ag/La<sub>2</sub>O<sub>3</sub> hybrid addition were prepared through pressure-free sintering at different sintering temperatures from 900 to 1200 °C. Microstructure, electrical conductivity and mechanical properties of W–Cu composites with additional Ag/La<sub>2</sub>O<sub>3</sub> hybrid were analyzed. Microstructural observation showed that Ag was partially solubilized into Cu to generate Cu–Ag solid solution during the sintering, while Ag aggregation and La<sub>2</sub>O<sub>3</sub> dispersion were found in the Cu matrix. The higher sintering temperature reduced the porosity of the sintered bulk composites. W–Cu composites with Ag/La<sub>2</sub>O<sub>3</sub> hybrid addition possessed the higher values of electrical conductivity, hardness and strength at each sintering temperature, and the optimum sintering temperature was 1100 °C, at which Ag/La<sub>2</sub>O<sub>3</sub> hybrid reached enhancement in properties comparing with W–Cu composites.</p></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"59 44\",\"pages\":\"20640 - 20656\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-024-10400-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10400-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在 900 至 1200 °C 的不同烧结温度下,通过无压烧结制备了添加 Ag/La2O3 杂化物的 W-Cu 复合材料。分析了添加 Ag/La2O3 杂化物的 W-Cu 复合材料的微观结构、导电性和机械性能。微观结构观察表明,在烧结过程中,Ag 部分溶解到了 Cu 中,生成了 Cu-Ag 固溶体,同时在 Cu 基体中发现了 Ag 聚集和 La2O3 分散。较高的烧结温度降低了烧结块体复合材料的孔隙率。添加了 Ag/La2O3 杂化物的 W-Cu 复合材料在每个烧结温度下都具有较高的导电率、硬度和强度值,最佳烧结温度为 1100 ℃,与 W-Cu 复合材料相比,Ag/La2O3 杂化物在该温度下的性能有所提高。
Enhancing electrical conductivity and mechanical properties of W–Cu composites with additional Ag/La2O3 hybrid
W–Cu composites with Ag/La2O3 hybrid addition were prepared through pressure-free sintering at different sintering temperatures from 900 to 1200 °C. Microstructure, electrical conductivity and mechanical properties of W–Cu composites with additional Ag/La2O3 hybrid were analyzed. Microstructural observation showed that Ag was partially solubilized into Cu to generate Cu–Ag solid solution during the sintering, while Ag aggregation and La2O3 dispersion were found in the Cu matrix. The higher sintering temperature reduced the porosity of the sintered bulk composites. W–Cu composites with Ag/La2O3 hybrid addition possessed the higher values of electrical conductivity, hardness and strength at each sintering temperature, and the optimum sintering temperature was 1100 °C, at which Ag/La2O3 hybrid reached enhancement in properties comparing with W–Cu composites.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.