使用 GnP、TiO2、MoS2、Al2O3 纳米颗粒配制的高油酸植物油基混合纳米流体在 MQL 加工中的导热特性分析

IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Anthony Chukwujekwu Okafor, Tobechukwu Kingsley Abor, Saidanvar Esanjonovich Valiev, Ignatius Echezona Ekengwu, Abiodun Saka, Monday U. Okoronkwo
{"title":"使用 GnP、TiO2、MoS2、Al2O3 纳米颗粒配制的高油酸植物油基混合纳米流体在 MQL 加工中的导热特性分析","authors":"Anthony Chukwujekwu Okafor,&nbsp;Tobechukwu Kingsley Abor,&nbsp;Saidanvar Esanjonovich Valiev,&nbsp;Ignatius Echezona Ekengwu,&nbsp;Abiodun Saka,&nbsp;Monday U. Okoronkwo","doi":"10.1007/s10765-024-03472-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the results of thermal conductivity characterization of six high oleic soybean oil (HOSO) and four high oleic canola oil (HOCO)-based hybrid nanofluids formulated with four types of nanoparticles (Graphene nanoplatelet (xGnP), TiO<sub>2</sub>, MoS<sub>2</sub>, and Al<sub>2</sub>O<sub>3</sub>) at nanoparticles wt% concentration from 1 % to 7 % in 1 % increment using the two-step method for use in MQL machining of difficult-to-cut metals. Thermal conductivity of the formulated hybrid nanofluids were measured using Thermtest Transient Hot Wire Liquid Thermal Conductivity Meter at temperatures from 25 °C to 75 °C in increment of 10 °C. Obtained results showed that thermal conductivity of all nanofluids decreases linearly with temperature, while the thermal conductivity enhancement increases nonlinearly with increase in wt% concentration, following second order polynomial. At 7-wt% nanoparticle concentration, hybrid nanofluids xGnP-TiO<sub>2</sub>/HOSO gave the highest thermal conductivity enhancement (109.73 % and 103.31 % at 25 and 75 °C) followed by xGnP-TiO<sub>2</sub>/HOCO (101.36 % and 97.52 % at 25 °C and 75 °C), xGnP-MoS<sub>2</sub>/HOCO (101.36 % and 97.52 % at 25 °C and 75 °C), xGnP-MoS<sub>2</sub>/HOSO (96.3 % and 96.89 % at 25 °C and 75 °C), xGnP-Al<sub>2</sub>O<sub>3</sub>/HOCO (91.62 % and 83.23 % at 25 °C and 75 °C), xGnP-Al<sub>2</sub>O<sub>3</sub>/HOSO (91.25 % and 83.23 % at 25 °C and 75 °C). xGnP hybrid nanofluids are recommended for MQL machining. TiO<sub>2</sub>–MoS<sub>2</sub>/HOSO, TiO<sub>2</sub>–MoS<sub>2</sub>/HOCO, MoS<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>/HOSO, TiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>/HOSO hybrid nanofluids gave the lowest thermal conductivities and are not recommended as base fluids due to their insignificant thermal conductivity enhancement. Thermal conductivity of the hybrid nanofluids is lower than that of mono-nanofluids, but there are other inherent properties that could be beneficial.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 12","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Conductivity Characterization of High Oleic Vegetable Oils Based Hybrid Nanofluids Formulated Using GnP, TiO2, MoS2, Al2O3 Nanoparticles for MQL Machining\",\"authors\":\"Anthony Chukwujekwu Okafor,&nbsp;Tobechukwu Kingsley Abor,&nbsp;Saidanvar Esanjonovich Valiev,&nbsp;Ignatius Echezona Ekengwu,&nbsp;Abiodun Saka,&nbsp;Monday U. Okoronkwo\",\"doi\":\"10.1007/s10765-024-03472-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the results of thermal conductivity characterization of six high oleic soybean oil (HOSO) and four high oleic canola oil (HOCO)-based hybrid nanofluids formulated with four types of nanoparticles (Graphene nanoplatelet (xGnP), TiO<sub>2</sub>, MoS<sub>2</sub>, and Al<sub>2</sub>O<sub>3</sub>) at nanoparticles wt% concentration from 1 % to 7 % in 1 % increment using the two-step method for use in MQL machining of difficult-to-cut metals. Thermal conductivity of the formulated hybrid nanofluids were measured using Thermtest Transient Hot Wire Liquid Thermal Conductivity Meter at temperatures from 25 °C to 75 °C in increment of 10 °C. Obtained results showed that thermal conductivity of all nanofluids decreases linearly with temperature, while the thermal conductivity enhancement increases nonlinearly with increase in wt% concentration, following second order polynomial. At 7-wt% nanoparticle concentration, hybrid nanofluids xGnP-TiO<sub>2</sub>/HOSO gave the highest thermal conductivity enhancement (109.73 % and 103.31 % at 25 and 75 °C) followed by xGnP-TiO<sub>2</sub>/HOCO (101.36 % and 97.52 % at 25 °C and 75 °C), xGnP-MoS<sub>2</sub>/HOCO (101.36 % and 97.52 % at 25 °C and 75 °C), xGnP-MoS<sub>2</sub>/HOSO (96.3 % and 96.89 % at 25 °C and 75 °C), xGnP-Al<sub>2</sub>O<sub>3</sub>/HOCO (91.62 % and 83.23 % at 25 °C and 75 °C), xGnP-Al<sub>2</sub>O<sub>3</sub>/HOSO (91.25 % and 83.23 % at 25 °C and 75 °C). xGnP hybrid nanofluids are recommended for MQL machining. TiO<sub>2</sub>–MoS<sub>2</sub>/HOSO, TiO<sub>2</sub>–MoS<sub>2</sub>/HOCO, MoS<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>/HOSO, TiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>/HOSO hybrid nanofluids gave the lowest thermal conductivities and are not recommended as base fluids due to their insignificant thermal conductivity enhancement. Thermal conductivity of the hybrid nanofluids is lower than that of mono-nanofluids, but there are other inherent properties that could be beneficial.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"45 12\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-024-03472-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03472-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文采用两步法对六种高油酸大豆油(HOSO)和四种高油酸菜籽油(HOCO)基混合纳米流体的热导率表征结果进行了介绍,这些混合纳米流体由四种类型的纳米颗粒(纳米石墨烯(xGnP)、TiO2、MoS2 和 Al2O3)配制而成,纳米颗粒的重量百分比浓度从 1 % 到 7 %,以 1 % 为增量,用于难切削金属的 MQL 加工。使用 Thermtest 瞬态热线液体导热仪测量了配制的混合纳米流体在 25 °C 至 75 °C 温度范围内以 10 °C 为增量的导热率。结果表明,所有纳米流体的热导率都随温度的升高而线性降低,而热导率的增强则随重量百分比浓度的增加而非线性增加,呈二阶多项式。当纳米粒子浓度为 7 wt%时,混合纳米流体 xGnP-TiO2/HOSO 的热导率增强率最高(25 和 75 ℃ 时分别为 109.73 % 和 103.31 %),其次是 xGnP-TiO2/HOCO (25 和 75 ℃ 时分别为 101.36 % 和 97.52 %)、xGnP-MoS2/HOCO(25 和 75 ℃ 时分别为 101.36 % 和 97.52 %)、xGnP-MoS2/HOCO(25 和 75 ℃ 时分别为 101.36 % 和 97.52 %)、xGnP-MoS2/HOCO(25 和 75 ℃ 时分别为 101.73 % 和 103.31 %)。xGnP-Al2O3/HOCO(25 °C 和 75 °C 时分别为 101.36 % 和 97.52 %)、xGnP-MoS2/HOSO(25 °C 和 75 °C 时分别为 96.3 % 和 96.89 %)、xGnP-Al2O3/HOCO(25 °C 和 75 °C 时分别为 91.62 % 和 83.23 %)、xGnP-Al2O3/HOSO(25 °C 和 75 °C 时分别为 91.25 % 和 83.23 %)。xGnP 混合纳米流体建议用于 MQL 加工。TiO2-MoS2/HOSO、TiO2-MoS2/HOCO、MoS2-Al2O3/HOSO、TiO2-Al2O3/HOSO 混合纳米流体的热导率最低,由于其热导率增强效果不明显,因此不建议用作基础流体。混合纳米流体的热导率低于单纳米流体,但其固有的其他特性可能会带来益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Conductivity Characterization of High Oleic Vegetable Oils Based Hybrid Nanofluids Formulated Using GnP, TiO2, MoS2, Al2O3 Nanoparticles for MQL Machining

This paper presents the results of thermal conductivity characterization of six high oleic soybean oil (HOSO) and four high oleic canola oil (HOCO)-based hybrid nanofluids formulated with four types of nanoparticles (Graphene nanoplatelet (xGnP), TiO2, MoS2, and Al2O3) at nanoparticles wt% concentration from 1 % to 7 % in 1 % increment using the two-step method for use in MQL machining of difficult-to-cut metals. Thermal conductivity of the formulated hybrid nanofluids were measured using Thermtest Transient Hot Wire Liquid Thermal Conductivity Meter at temperatures from 25 °C to 75 °C in increment of 10 °C. Obtained results showed that thermal conductivity of all nanofluids decreases linearly with temperature, while the thermal conductivity enhancement increases nonlinearly with increase in wt% concentration, following second order polynomial. At 7-wt% nanoparticle concentration, hybrid nanofluids xGnP-TiO2/HOSO gave the highest thermal conductivity enhancement (109.73 % and 103.31 % at 25 and 75 °C) followed by xGnP-TiO2/HOCO (101.36 % and 97.52 % at 25 °C and 75 °C), xGnP-MoS2/HOCO (101.36 % and 97.52 % at 25 °C and 75 °C), xGnP-MoS2/HOSO (96.3 % and 96.89 % at 25 °C and 75 °C), xGnP-Al2O3/HOCO (91.62 % and 83.23 % at 25 °C and 75 °C), xGnP-Al2O3/HOSO (91.25 % and 83.23 % at 25 °C and 75 °C). xGnP hybrid nanofluids are recommended for MQL machining. TiO2–MoS2/HOSO, TiO2–MoS2/HOCO, MoS2–Al2O3/HOSO, TiO2–Al2O3/HOSO hybrid nanofluids gave the lowest thermal conductivities and are not recommended as base fluids due to their insignificant thermal conductivity enhancement. Thermal conductivity of the hybrid nanofluids is lower than that of mono-nanofluids, but there are other inherent properties that could be beneficial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信