新型线对称双心变质机制的多重分岔和环境适应性

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Song Lin;Jiansheng Dai;Yifeng Song;Hongguang Wang;Bingbing Yuan;Yingbin Feng
{"title":"新型线对称双心变质机制的多重分岔和环境适应性","authors":"Song Lin;Jiansheng Dai;Yifeng Song;Hongguang Wang;Bingbing Yuan;Yingbin Feng","doi":"10.1109/LRA.2024.3494662","DOIUrl":null,"url":null,"abstract":"To improve the environmental adaptability of the mechanism, this letter proposes a metamorphic mechanism configuration synthesis method based on environmental constraint characteristics. In particular, a novel 6R line-symmetric double-centered metamorphic mechanism is synthesized and the multi-bifurcation characteristics and environmental adaptability are analyzed and verified. Firstly, a configuration synthesis method is proposed based on the bifocal geometric constraints of the elliptical oblique section of the pipe. The variation of the instantaneous mobility with the number of links is derived and \n<italic>m</i>\n=\n<italic>n</i>\n=3 is the minimum number of links that the mechanism is movable. Then, for the 6R mechanism, the joint velocity solution spaces of all the motion branches are revealed through the closed-loop and higher-order kinematics. Further, the correlation between the joint angle, configuration, and environment layers is demonstrated. The results show that the 6R mechanism has four motion branches (\n<italic>MB</i>\n<inline-formula><tex-math>$_{1}$</tex-math></inline-formula>\n, \n<italic>MB</i>\n<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>\n, \n<italic>MB</i>\n<inline-formula><tex-math>$_{3}$</tex-math></inline-formula>\n, and \n<italic>MB</i>\n<inline-formula><tex-math>$_{4}$</tex-math></inline-formula>\n) with different topological structures corresponding to different pipe environments and four 4R serial motion branches (\n<italic>SMB</i>\n<inline-formula><tex-math>$_{1}$</tex-math></inline-formula>\n, \n<italic>SMB</i>\n<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>\n, \n<italic>SMB</i>\n<inline-formula><tex-math>$_{3}$</tex-math></inline-formula>\n, and \n<italic>SMB</i>\n<inline-formula><tex-math>$_{4}$</tex-math></inline-formula>\n). Eventually, a wheeled metamorphic robot is designed, and the controllable motion branch transformation of the 6R mechanism and the pipe environment adaptability of the robot are proved by prototype experiments.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11746-11753"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Bifurcation and Environmental Adaptability of a Novel Line-Symmetric Double-Centered Metamorphic Mechanism\",\"authors\":\"Song Lin;Jiansheng Dai;Yifeng Song;Hongguang Wang;Bingbing Yuan;Yingbin Feng\",\"doi\":\"10.1109/LRA.2024.3494662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the environmental adaptability of the mechanism, this letter proposes a metamorphic mechanism configuration synthesis method based on environmental constraint characteristics. In particular, a novel 6R line-symmetric double-centered metamorphic mechanism is synthesized and the multi-bifurcation characteristics and environmental adaptability are analyzed and verified. Firstly, a configuration synthesis method is proposed based on the bifocal geometric constraints of the elliptical oblique section of the pipe. The variation of the instantaneous mobility with the number of links is derived and \\n<italic>m</i>\\n=\\n<italic>n</i>\\n=3 is the minimum number of links that the mechanism is movable. Then, for the 6R mechanism, the joint velocity solution spaces of all the motion branches are revealed through the closed-loop and higher-order kinematics. Further, the correlation between the joint angle, configuration, and environment layers is demonstrated. The results show that the 6R mechanism has four motion branches (\\n<italic>MB</i>\\n<inline-formula><tex-math>$_{1}$</tex-math></inline-formula>\\n, \\n<italic>MB</i>\\n<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>\\n, \\n<italic>MB</i>\\n<inline-formula><tex-math>$_{3}$</tex-math></inline-formula>\\n, and \\n<italic>MB</i>\\n<inline-formula><tex-math>$_{4}$</tex-math></inline-formula>\\n) with different topological structures corresponding to different pipe environments and four 4R serial motion branches (\\n<italic>SMB</i>\\n<inline-formula><tex-math>$_{1}$</tex-math></inline-formula>\\n, \\n<italic>SMB</i>\\n<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>\\n, \\n<italic>SMB</i>\\n<inline-formula><tex-math>$_{3}$</tex-math></inline-formula>\\n, and \\n<italic>SMB</i>\\n<inline-formula><tex-math>$_{4}$</tex-math></inline-formula>\\n). Eventually, a wheeled metamorphic robot is designed, and the controllable motion branch transformation of the 6R mechanism and the pipe environment adaptability of the robot are proved by prototype experiments.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11746-11753\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10747259/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10747259/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

为了提高机构的环境适应性,本文提出了一种基于环境约束特征的变态机构构型合成方法。其中,合成了一种新型 6R 线对称双中心变质机构,并对其多分岔特性和环境适应性进行了分析和验证。首先,基于管道椭圆斜截面的双焦点几何约束,提出了一种构型合成方法。得出了瞬时移动性随环节数的变化,m=n=3 是机构可移动的最小环节数。然后,对于 6R 机构,通过闭环和高阶运动学揭示了所有运动分支的关节速度解空间。此外,还展示了关节角度、配置和环境层之间的相关性。结果表明,6R 机构有四个运动分支(MB$_{1}$、MB$_{2}$、MB$_{3}$ 和 MB$_{4}$),其拓扑结构各不相同,与不同的管道环境相对应;还有四个 4R 串行运动分支(SMB$_{1}$、SMB$_{2}$、SMB$_{3}$ 和 SMB$_{4}$)。最终,设计出了轮式变形机器人,并通过原型实验证明了 6R 机构的可控运动分支变换和机器人的管道环境适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Bifurcation and Environmental Adaptability of a Novel Line-Symmetric Double-Centered Metamorphic Mechanism
To improve the environmental adaptability of the mechanism, this letter proposes a metamorphic mechanism configuration synthesis method based on environmental constraint characteristics. In particular, a novel 6R line-symmetric double-centered metamorphic mechanism is synthesized and the multi-bifurcation characteristics and environmental adaptability are analyzed and verified. Firstly, a configuration synthesis method is proposed based on the bifocal geometric constraints of the elliptical oblique section of the pipe. The variation of the instantaneous mobility with the number of links is derived and m = n =3 is the minimum number of links that the mechanism is movable. Then, for the 6R mechanism, the joint velocity solution spaces of all the motion branches are revealed through the closed-loop and higher-order kinematics. Further, the correlation between the joint angle, configuration, and environment layers is demonstrated. The results show that the 6R mechanism has four motion branches ( MB $_{1}$ , MB $_{2}$ , MB $_{3}$ , and MB $_{4}$ ) with different topological structures corresponding to different pipe environments and four 4R serial motion branches ( SMB $_{1}$ , SMB $_{2}$ , SMB $_{3}$ , and SMB $_{4}$ ). Eventually, a wheeled metamorphic robot is designed, and the controllable motion branch transformation of the 6R mechanism and the pipe environment adaptability of the robot are proved by prototype experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信