立方样条上的势能博弈,用于自利式多代理运动规划

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Samuel Williams;Jyotirmoy Deshmukh
{"title":"立方样条上的势能博弈,用于自利式多代理运动规划","authors":"Samuel Williams;Jyotirmoy Deshmukh","doi":"10.1109/LCSYS.2024.3491052","DOIUrl":null,"url":null,"abstract":"Existing multi-agent motion planners face scalability challenges with the number of agents and route plans that span long time horizons. We tackle these issues by introducing additional abstraction by interpolating agent trajectories with natural cubic splines and leveraging existing results that under some natural assumptions, the resulting game has the structure of a potential game. We prove a simultaneous gradient descent method using independent per-agent step sizes is guaranteed to converge to a local Nash equilibrium. Compared with recent iLQR-based potential game solvers, our method solves for local Nash equilibrium trajectories faster in games with up to 52 agents, and we demonstrate scalability to long horizons.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2487-2492"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential Games on Cubic Splines for Self-Interested Multi-Agent Motion Planning\",\"authors\":\"Samuel Williams;Jyotirmoy Deshmukh\",\"doi\":\"10.1109/LCSYS.2024.3491052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing multi-agent motion planners face scalability challenges with the number of agents and route plans that span long time horizons. We tackle these issues by introducing additional abstraction by interpolating agent trajectories with natural cubic splines and leveraging existing results that under some natural assumptions, the resulting game has the structure of a potential game. We prove a simultaneous gradient descent method using independent per-agent step sizes is guaranteed to converge to a local Nash equilibrium. Compared with recent iLQR-based potential game solvers, our method solves for local Nash equilibrium trajectories faster in games with up to 52 agents, and we demonstrate scalability to long horizons.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2487-2492\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10742007/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10742007/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现有的多代理运动规划器面临着代理数量和路线计划跨度长的可扩展性挑战。为了解决这些问题,我们引入了额外的抽象方法,用自然立方样条插值代理轨迹,并利用现有结果,即在某些自然假设下,所产生的博弈具有潜在博弈的结构。我们证明了一种使用独立的每个代理步长的同步梯度下降方法可以保证收敛到局部纳什均衡。与最近基于 iLQR 的潜在博弈求解器相比,我们的方法能在多达 52 个代理的博弈中更快地求解出局部纳什均衡轨迹,而且我们还证明了该方法在长时间内的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential Games on Cubic Splines for Self-Interested Multi-Agent Motion Planning
Existing multi-agent motion planners face scalability challenges with the number of agents and route plans that span long time horizons. We tackle these issues by introducing additional abstraction by interpolating agent trajectories with natural cubic splines and leveraging existing results that under some natural assumptions, the resulting game has the structure of a potential game. We prove a simultaneous gradient descent method using independent per-agent step sizes is guaranteed to converge to a local Nash equilibrium. Compared with recent iLQR-based potential game solvers, our method solves for local Nash equilibrium trajectories faster in games with up to 52 agents, and we demonstrate scalability to long horizons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信