通过近场谐振感应耦合为智能骨科植入物供电

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
François Frassati;Mélanie Descharles;Martin Gauroy;Agathe Yvinou;Eric Stindel;Guillaume Dardenne;Guillaume Nonglaton;Pierre Gasnier
{"title":"通过近场谐振感应耦合为智能骨科植入物供电","authors":"François Frassati;Mélanie Descharles;Martin Gauroy;Agathe Yvinou;Eric Stindel;Guillaume Dardenne;Guillaume Nonglaton;Pierre Gasnier","doi":"10.1109/JERM.2024.3406331","DOIUrl":null,"url":null,"abstract":"Our research aims to enhance smart orthopedic knee implants used in Total Knee Arthroplasty (TKA). With the projected quadrupling of TKA demand by 2030 due to factors like aging populations, rising obesity rates, and broader indications for younger patients, our focus is on instrumented medical implants to measure knee parameters. In this paper, we report the optimization of a wireless power transmission system for powering smart knee implants, employing an established HF Near-field Resonant Inductive Coupling (NRIC) technique at \n<inline-formula><tex-math>$13.56 \\,\\mathrm{M}\\mathrm{Hz}$</tex-math></inline-formula>\n inside the stem of a tibial knee implant. We propose a pragmatic optimization approach in this study, guided by the integration constraints of a knee implant and validated by orthopedic surgeons through cadaveric specimen testing. Finite Element simulations guided the selection of a frontal 3-turn solenoid (called “paperclip” coil) at the Rx side, located at the tip of the stem, which demonstrated balanced performance metrics and reasonable volume occupancy (1.6 cm\n<sup>3</sup>\n). Power transfer measurements were conducted through conductive solutions mimicking skin, muscle, and bones. At \n<inline-formula><tex-math>$13.56 \\,\\mathrm{M}\\mathrm{Hz}$</tex-math></inline-formula>\n, a power transfer efficiency \n<inline-formula><tex-math>$\\eta$</tex-math></inline-formula>\n of 30% and 7.5% (\n<inline-formula><tex-math>$300 \\,\\mathrm{m}\\mathrm{W}$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$75 \\,\\mathrm{m}\\mathrm{W}$</tex-math></inline-formula>\n at \n<inline-formula><tex-math>$1 \\,\\mathrm{W}$</tex-math></inline-formula>\n input power) was achieved at Tx-Rx distances of \n<inline-formula><tex-math>$25 \\,\\mathrm{m}\\mathrm{m}$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$40 \\,\\mathrm{m}\\mathrm{m}$</tex-math></inline-formula>\n respectively. The proposed solution was implanted in a cadaveric specimen : \n<inline-formula><tex-math>$250 \\,\\mathrm{m}\\mathrm{W}$</tex-math></inline-formula>\n was obtained at an estimated \n<inline-formula><tex-math>$30 \\,\\mathrm{m}\\mathrm{m}$</tex-math></inline-formula>\n distance for an input power of \n<inline-formula><tex-math>$1 \\,\\mathrm{W}$</tex-math></inline-formula>\n at the Tx side. For the same distance, we also performed a successful DC power provision up to \n<inline-formula><tex-math>$64 \\,\\mathrm{m}\\mathrm{W}$</tex-math></inline-formula>\n at \n<inline-formula><tex-math>$3 \\,\\mathrm{V}$</tex-math></inline-formula>\n DC and data transfer functions at \n<inline-formula><tex-math>$26\\, \\mathrm{kbit\\,s}^{-1}$</tex-math></inline-formula>\n in the cadaver. The proposed system, with its integration strategy, holds promise in powering advanced sensor functions, contributing to the identification and monitoring of postoperative complications and potentially reducing the need for long-term revisions.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 4","pages":"372-383"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Powering Smart Orthopedic Implants Through Near-Field Resonant Inductive Coupling\",\"authors\":\"François Frassati;Mélanie Descharles;Martin Gauroy;Agathe Yvinou;Eric Stindel;Guillaume Dardenne;Guillaume Nonglaton;Pierre Gasnier\",\"doi\":\"10.1109/JERM.2024.3406331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our research aims to enhance smart orthopedic knee implants used in Total Knee Arthroplasty (TKA). With the projected quadrupling of TKA demand by 2030 due to factors like aging populations, rising obesity rates, and broader indications for younger patients, our focus is on instrumented medical implants to measure knee parameters. In this paper, we report the optimization of a wireless power transmission system for powering smart knee implants, employing an established HF Near-field Resonant Inductive Coupling (NRIC) technique at \\n<inline-formula><tex-math>$13.56 \\\\,\\\\mathrm{M}\\\\mathrm{Hz}$</tex-math></inline-formula>\\n inside the stem of a tibial knee implant. We propose a pragmatic optimization approach in this study, guided by the integration constraints of a knee implant and validated by orthopedic surgeons through cadaveric specimen testing. Finite Element simulations guided the selection of a frontal 3-turn solenoid (called “paperclip” coil) at the Rx side, located at the tip of the stem, which demonstrated balanced performance metrics and reasonable volume occupancy (1.6 cm\\n<sup>3</sup>\\n). Power transfer measurements were conducted through conductive solutions mimicking skin, muscle, and bones. At \\n<inline-formula><tex-math>$13.56 \\\\,\\\\mathrm{M}\\\\mathrm{Hz}$</tex-math></inline-formula>\\n, a power transfer efficiency \\n<inline-formula><tex-math>$\\\\eta$</tex-math></inline-formula>\\n of 30% and 7.5% (\\n<inline-formula><tex-math>$300 \\\\,\\\\mathrm{m}\\\\mathrm{W}$</tex-math></inline-formula>\\n and \\n<inline-formula><tex-math>$75 \\\\,\\\\mathrm{m}\\\\mathrm{W}$</tex-math></inline-formula>\\n at \\n<inline-formula><tex-math>$1 \\\\,\\\\mathrm{W}$</tex-math></inline-formula>\\n input power) was achieved at Tx-Rx distances of \\n<inline-formula><tex-math>$25 \\\\,\\\\mathrm{m}\\\\mathrm{m}$</tex-math></inline-formula>\\n and \\n<inline-formula><tex-math>$40 \\\\,\\\\mathrm{m}\\\\mathrm{m}$</tex-math></inline-formula>\\n respectively. The proposed solution was implanted in a cadaveric specimen : \\n<inline-formula><tex-math>$250 \\\\,\\\\mathrm{m}\\\\mathrm{W}$</tex-math></inline-formula>\\n was obtained at an estimated \\n<inline-formula><tex-math>$30 \\\\,\\\\mathrm{m}\\\\mathrm{m}$</tex-math></inline-formula>\\n distance for an input power of \\n<inline-formula><tex-math>$1 \\\\,\\\\mathrm{W}$</tex-math></inline-formula>\\n at the Tx side. For the same distance, we also performed a successful DC power provision up to \\n<inline-formula><tex-math>$64 \\\\,\\\\mathrm{m}\\\\mathrm{W}$</tex-math></inline-formula>\\n at \\n<inline-formula><tex-math>$3 \\\\,\\\\mathrm{V}$</tex-math></inline-formula>\\n DC and data transfer functions at \\n<inline-formula><tex-math>$26\\\\, \\\\mathrm{kbit\\\\,s}^{-1}$</tex-math></inline-formula>\\n in the cadaver. The proposed system, with its integration strategy, holds promise in powering advanced sensor functions, contributing to the identification and monitoring of postoperative complications and potentially reducing the need for long-term revisions.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":\"8 4\",\"pages\":\"372-383\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10555383/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10555383/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们的研究旨在改进用于全膝关节置换术(TKA)的智能矫形膝关节植入物。由于人口老龄化、肥胖率上升、年轻患者适应症扩大等因素,预计到 2030 年,全膝关节置换术的需求将翻两番。在本文中,我们报告了用于为智能膝关节植入物供电的无线输电系统的优化情况,该系统在胫骨膝关节植入物的柄内采用了成熟的高频近场谐振感应耦合(NRIC)技术,频率为 13.56 \mathrm{M}\mathrm{Hz}$ 。在这项研究中,我们提出了一种实用的优化方法,该方法以膝关节植入物的集成限制为指导,并通过尸体标本测试得到了矫形外科医生的验证。在有限元模拟的指导下,我们选择了一个正面三圈的螺线管(称为 "回形针 "线圈),它位于茎干的顶端,表现出均衡的性能指标和合理的体积占用(1.6 立方厘米)。功率传输测量是通过模拟皮肤、肌肉和骨骼的导电溶液进行的。在 13.56 美元/mathrm{M}/mathrm{Hz}$的条件下,功率传输效率为 30% 和 7.5% (300 美元/mathrm{M}/mathrm{Hz}$)。5%(输入功率为1美元时,功率传输效率分别为300美元和75美元),Tx-Rx距离分别为25美元和40美元。将所提出的解决方案植入尸体标本:在Tx侧输入功率为1美元时,估计距离为30美元时可获得250美元的功率。在相同的距离上,我们还成功地在3美元直流电压下提供了高达64美元的直流电,并在尸体中实现了26美元的数据传输功能。所提议的系统及其集成策略有望为先进的传感器功能提供动力,有助于识别和监测术后并发症,并有可能减少长期翻修的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Powering Smart Orthopedic Implants Through Near-Field Resonant Inductive Coupling
Our research aims to enhance smart orthopedic knee implants used in Total Knee Arthroplasty (TKA). With the projected quadrupling of TKA demand by 2030 due to factors like aging populations, rising obesity rates, and broader indications for younger patients, our focus is on instrumented medical implants to measure knee parameters. In this paper, we report the optimization of a wireless power transmission system for powering smart knee implants, employing an established HF Near-field Resonant Inductive Coupling (NRIC) technique at $13.56 \,\mathrm{M}\mathrm{Hz}$ inside the stem of a tibial knee implant. We propose a pragmatic optimization approach in this study, guided by the integration constraints of a knee implant and validated by orthopedic surgeons through cadaveric specimen testing. Finite Element simulations guided the selection of a frontal 3-turn solenoid (called “paperclip” coil) at the Rx side, located at the tip of the stem, which demonstrated balanced performance metrics and reasonable volume occupancy (1.6 cm 3 ). Power transfer measurements were conducted through conductive solutions mimicking skin, muscle, and bones. At $13.56 \,\mathrm{M}\mathrm{Hz}$ , a power transfer efficiency $\eta$ of 30% and 7.5% ( $300 \,\mathrm{m}\mathrm{W}$ and $75 \,\mathrm{m}\mathrm{W}$ at $1 \,\mathrm{W}$ input power) was achieved at Tx-Rx distances of $25 \,\mathrm{m}\mathrm{m}$ and $40 \,\mathrm{m}\mathrm{m}$ respectively. The proposed solution was implanted in a cadaveric specimen : $250 \,\mathrm{m}\mathrm{W}$ was obtained at an estimated $30 \,\mathrm{m}\mathrm{m}$ distance for an input power of $1 \,\mathrm{W}$ at the Tx side. For the same distance, we also performed a successful DC power provision up to $64 \,\mathrm{m}\mathrm{W}$ at $3 \,\mathrm{V}$ DC and data transfer functions at $26\, \mathrm{kbit\,s}^{-1}$ in the cadaver. The proposed system, with its integration strategy, holds promise in powering advanced sensor functions, contributing to the identification and monitoring of postoperative complications and potentially reducing the need for long-term revisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信