{"title":"沿海泻湖有机物降解产生的主要溶解无机碳:碳同位素的证据","authors":"Mohd Danish, and , Gyana Ranjan Tripathy*, ","doi":"10.1021/acsearthspacechem.4c0014810.1021/acsearthspacechem.4c00148","DOIUrl":null,"url":null,"abstract":"<p >Coastal oceanic settings are biogeochemically active zones and play a dominant role in the global carbon cycle. In this contribution, we have investigated the spatial distribution of dissolved inorganic carbon (DIC) and δ<sup>13</sup>C<sub>DIC</sub> along the salinity gradient of a large tropical coastal lagoon (Chilika, India) and major source waters (river, groundwater) to the lagoon for three different (pre-monsoon, monsoon, and post-monsoon) seasons. These data were used to constrain internal cycling and DIC fluxes to the Bay of Bengal. The average [DIC] and δ<sup>13</sup>C<sub>DIC</sub> values of the Chilika, although they exhibit significant variation within a season, are found comparable for the pre-monsoon (1.8 ± 0.6 mM; −5 ± 3 ‰), monsoon (1.7 ± 0.4 mM; −4 ± 2 ‰), and post-monsoon (1.9 ± 0.3 mM; −4 ± 3‰) samples. Co-variation between DIC (and δ<sup>13</sup>C<sub>DIC</sub>) and salinity during all three seasons deviates from the theoretical mixing line (TML) between river and seawater, indicating nonconservative behavior of DIC in the lagoon. The magnitude of the DIC and δ<sup>13</sup>C<sub>DIC</sub> deviations from their corresponding TML points to dominancy of organic matter degradation in causing this nonconservative trend. Additionally, the pre-monsoon samples also show a minor effect of calcite precipitation on the [DIC]. The LOICZ model estimates that the DIC flux from this lagoon to the ocean is higher than that reported for several peninsular Indian rivers, despite their high (378 km<sup>3</sup>/yr) freshwater influxes to the Bay of Bengal. This disproportionally higher DIC flux is linked to remineralization of organic matter, underscoring its importance in regulating the inorganic carbon cycle of this highly productive coastal system.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"8 11","pages":"2155–2165 2155–2165"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dominant Production of Dissolved Inorganic Carbon by Organic Matter Degradation in a Coastal Lagoon: Evidence from Carbon Isotopes\",\"authors\":\"Mohd Danish, and , Gyana Ranjan Tripathy*, \",\"doi\":\"10.1021/acsearthspacechem.4c0014810.1021/acsearthspacechem.4c00148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Coastal oceanic settings are biogeochemically active zones and play a dominant role in the global carbon cycle. In this contribution, we have investigated the spatial distribution of dissolved inorganic carbon (DIC) and δ<sup>13</sup>C<sub>DIC</sub> along the salinity gradient of a large tropical coastal lagoon (Chilika, India) and major source waters (river, groundwater) to the lagoon for three different (pre-monsoon, monsoon, and post-monsoon) seasons. These data were used to constrain internal cycling and DIC fluxes to the Bay of Bengal. The average [DIC] and δ<sup>13</sup>C<sub>DIC</sub> values of the Chilika, although they exhibit significant variation within a season, are found comparable for the pre-monsoon (1.8 ± 0.6 mM; −5 ± 3 ‰), monsoon (1.7 ± 0.4 mM; −4 ± 2 ‰), and post-monsoon (1.9 ± 0.3 mM; −4 ± 3‰) samples. Co-variation between DIC (and δ<sup>13</sup>C<sub>DIC</sub>) and salinity during all three seasons deviates from the theoretical mixing line (TML) between river and seawater, indicating nonconservative behavior of DIC in the lagoon. The magnitude of the DIC and δ<sup>13</sup>C<sub>DIC</sub> deviations from their corresponding TML points to dominancy of organic matter degradation in causing this nonconservative trend. Additionally, the pre-monsoon samples also show a minor effect of calcite precipitation on the [DIC]. The LOICZ model estimates that the DIC flux from this lagoon to the ocean is higher than that reported for several peninsular Indian rivers, despite their high (378 km<sup>3</sup>/yr) freshwater influxes to the Bay of Bengal. This disproportionally higher DIC flux is linked to remineralization of organic matter, underscoring its importance in regulating the inorganic carbon cycle of this highly productive coastal system.</p>\",\"PeriodicalId\":15,\"journal\":{\"name\":\"ACS Earth and Space Chemistry\",\"volume\":\"8 11\",\"pages\":\"2155–2165 2155–2165\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Earth and Space Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00148\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00148","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dominant Production of Dissolved Inorganic Carbon by Organic Matter Degradation in a Coastal Lagoon: Evidence from Carbon Isotopes
Coastal oceanic settings are biogeochemically active zones and play a dominant role in the global carbon cycle. In this contribution, we have investigated the spatial distribution of dissolved inorganic carbon (DIC) and δ13CDIC along the salinity gradient of a large tropical coastal lagoon (Chilika, India) and major source waters (river, groundwater) to the lagoon for three different (pre-monsoon, monsoon, and post-monsoon) seasons. These data were used to constrain internal cycling and DIC fluxes to the Bay of Bengal. The average [DIC] and δ13CDIC values of the Chilika, although they exhibit significant variation within a season, are found comparable for the pre-monsoon (1.8 ± 0.6 mM; −5 ± 3 ‰), monsoon (1.7 ± 0.4 mM; −4 ± 2 ‰), and post-monsoon (1.9 ± 0.3 mM; −4 ± 3‰) samples. Co-variation between DIC (and δ13CDIC) and salinity during all three seasons deviates from the theoretical mixing line (TML) between river and seawater, indicating nonconservative behavior of DIC in the lagoon. The magnitude of the DIC and δ13CDIC deviations from their corresponding TML points to dominancy of organic matter degradation in causing this nonconservative trend. Additionally, the pre-monsoon samples also show a minor effect of calcite precipitation on the [DIC]. The LOICZ model estimates that the DIC flux from this lagoon to the ocean is higher than that reported for several peninsular Indian rivers, despite their high (378 km3/yr) freshwater influxes to the Bay of Bengal. This disproportionally higher DIC flux is linked to remineralization of organic matter, underscoring its importance in regulating the inorganic carbon cycle of this highly productive coastal system.
期刊介绍:
The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.