Yuying Wang, Jibin Wang, Xiaoyan Ding, Xinjun Yu, Yudan Zhao, Zhengxuan Pan, Longwu Xu, Wenchang Cheng, Meng Ji, Chuanming Yuan*, Tao Wang* and Baolong Zhou*,
{"title":"\"细菌自杀一种具有感染微环境增强型协同光热和酶活性的氨基连接共价有机聚合物,可用于伤口治疗","authors":"Yuying Wang, Jibin Wang, Xiaoyan Ding, Xinjun Yu, Yudan Zhao, Zhengxuan Pan, Longwu Xu, Wenchang Cheng, Meng Ji, Chuanming Yuan*, Tao Wang* and Baolong Zhou*, ","doi":"10.1021/acsapm.4c0260710.1021/acsapm.4c02607","DOIUrl":null,"url":null,"abstract":"<p >The infected microenvironment provides fertile ground for bacterial growth and the progression of inflammation, making it challenging to cure related diseases. Here, a covalent organic polymer (COP)-based antibacterial agent, denoted as PF-COP, was developed. PF-COP has intrinsic photothermal capacity, which allows it to take advantage of the infected microenvironment for enhanced synergistic wound infection therapy. PF-COP was prepared via the copolymerization of piperazine with ferrocene diformaldehyde using catalyst-free aminal chemistry, in which the piperazine units could easily bind with acid to generate the cationic skeleton, while the ferrocene components could convert the endogenous H<sub>2</sub>O<sub>2</sub> into a toxic hydroxyl radical. This effectively regulates the infection of the microenvironment. The acidified positively charged structures could enhance material adhesion with bacterial cell membranes and improve photothermal responsiveness, significantly improving the therapeutic effect. As a result, PF-COP amalgamating photothermal and enzyme catalytic capacities could serve as an infection microenvironment-enhanced therapeutic agent. It could disrupt the balance of the infection microenvironment, destroying the optimal growth environment for bacteria and inducing “bacterial suicide”, and regulate the microenvironment to promote the growth of normal cells, thus accelerating the wound healing. Therefore, this work presents a promising construction strategy for the precise development of COP-based therapeutics facilitating wound healing through direct infectious microenvironment utilization and regulation.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"6 22","pages":"13764–13774 13764–13774"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Bacterial Suicide”: An Aminal-Linked Covalent Organic Polymer with Infection-Microenvironment-Enhanced Synergistic Photothermal and Enzymatic Activities for Wound Therapy\",\"authors\":\"Yuying Wang, Jibin Wang, Xiaoyan Ding, Xinjun Yu, Yudan Zhao, Zhengxuan Pan, Longwu Xu, Wenchang Cheng, Meng Ji, Chuanming Yuan*, Tao Wang* and Baolong Zhou*, \",\"doi\":\"10.1021/acsapm.4c0260710.1021/acsapm.4c02607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The infected microenvironment provides fertile ground for bacterial growth and the progression of inflammation, making it challenging to cure related diseases. Here, a covalent organic polymer (COP)-based antibacterial agent, denoted as PF-COP, was developed. PF-COP has intrinsic photothermal capacity, which allows it to take advantage of the infected microenvironment for enhanced synergistic wound infection therapy. PF-COP was prepared via the copolymerization of piperazine with ferrocene diformaldehyde using catalyst-free aminal chemistry, in which the piperazine units could easily bind with acid to generate the cationic skeleton, while the ferrocene components could convert the endogenous H<sub>2</sub>O<sub>2</sub> into a toxic hydroxyl radical. This effectively regulates the infection of the microenvironment. The acidified positively charged structures could enhance material adhesion with bacterial cell membranes and improve photothermal responsiveness, significantly improving the therapeutic effect. As a result, PF-COP amalgamating photothermal and enzyme catalytic capacities could serve as an infection microenvironment-enhanced therapeutic agent. It could disrupt the balance of the infection microenvironment, destroying the optimal growth environment for bacteria and inducing “bacterial suicide”, and regulate the microenvironment to promote the growth of normal cells, thus accelerating the wound healing. Therefore, this work presents a promising construction strategy for the precise development of COP-based therapeutics facilitating wound healing through direct infectious microenvironment utilization and regulation.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"6 22\",\"pages\":\"13764–13774 13764–13774\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.4c02607\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c02607","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
“Bacterial Suicide”: An Aminal-Linked Covalent Organic Polymer with Infection-Microenvironment-Enhanced Synergistic Photothermal and Enzymatic Activities for Wound Therapy
The infected microenvironment provides fertile ground for bacterial growth and the progression of inflammation, making it challenging to cure related diseases. Here, a covalent organic polymer (COP)-based antibacterial agent, denoted as PF-COP, was developed. PF-COP has intrinsic photothermal capacity, which allows it to take advantage of the infected microenvironment for enhanced synergistic wound infection therapy. PF-COP was prepared via the copolymerization of piperazine with ferrocene diformaldehyde using catalyst-free aminal chemistry, in which the piperazine units could easily bind with acid to generate the cationic skeleton, while the ferrocene components could convert the endogenous H2O2 into a toxic hydroxyl radical. This effectively regulates the infection of the microenvironment. The acidified positively charged structures could enhance material adhesion with bacterial cell membranes and improve photothermal responsiveness, significantly improving the therapeutic effect. As a result, PF-COP amalgamating photothermal and enzyme catalytic capacities could serve as an infection microenvironment-enhanced therapeutic agent. It could disrupt the balance of the infection microenvironment, destroying the optimal growth environment for bacteria and inducing “bacterial suicide”, and regulate the microenvironment to promote the growth of normal cells, thus accelerating the wound healing. Therefore, this work presents a promising construction strategy for the precise development of COP-based therapeutics facilitating wound healing through direct infectious microenvironment utilization and regulation.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.