Guillaume Esser, Robin Crits, Gabriella Barozzino-Consiglio, Ayoub Daouli, Guillaume Maurin, Yaroslav Filinchuk*, Sophie Hermans* and Timothy Steenhaut*,
{"title":"在金属有机框架上添加多胺作为在潮湿条件下选择性去除 H2S 的有效策略","authors":"Guillaume Esser, Robin Crits, Gabriella Barozzino-Consiglio, Ayoub Daouli, Guillaume Maurin, Yaroslav Filinchuk*, Sophie Hermans* and Timothy Steenhaut*, ","doi":"10.1021/acsaenm.4c0053510.1021/acsaenm.4c00535","DOIUrl":null,"url":null,"abstract":"<p >Removal of highly toxic and corrosive hydrogen sulfide from gas flows is of paramount importance for controlling the environment and in several industrial processes. This contribution reports a straightforward strategy to engineer sorbents for efficient hydrogen sulfide removal under humid conditions by functionalizing the open metal sites of metal–organic frameworks (MOFs) with polyamines. MIL-101(Cr) MOFs were successfully modified with ethylenediamine and tris(2-aminoethyl)amine, and the resulting materials were characterized using X-ray diffraction, FTIR, NMR, nitrogen sorption, and thermogravimetric analysis (TGA), confirming the functionalization. Although the functionalized MOFs exhibited a greater affinity for water compared to the unmodified MIL-101(Cr), they efficiently removed H<sub>2</sub>S under humid conditions without framework degradation, whereas the pristine material did not. This was demonstrated by TGA-MS and elemental analysis and confirmed by density functional theory calculations. The developed approach offers a promising pathway for the design of advanced sorbents tailored for H<sub>2</sub>S removal in industrial and environmental applications.</p>","PeriodicalId":55639,"journal":{"name":"ACS Applied Engineering Materials","volume":"2 11","pages":"2619–2625 2619–2625"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Appending Polyamines on Metal–Organic Frameworks as an Efficient Strategy for Selective Removal of H2S under Humid Conditions\",\"authors\":\"Guillaume Esser, Robin Crits, Gabriella Barozzino-Consiglio, Ayoub Daouli, Guillaume Maurin, Yaroslav Filinchuk*, Sophie Hermans* and Timothy Steenhaut*, \",\"doi\":\"10.1021/acsaenm.4c0053510.1021/acsaenm.4c00535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Removal of highly toxic and corrosive hydrogen sulfide from gas flows is of paramount importance for controlling the environment and in several industrial processes. This contribution reports a straightforward strategy to engineer sorbents for efficient hydrogen sulfide removal under humid conditions by functionalizing the open metal sites of metal–organic frameworks (MOFs) with polyamines. MIL-101(Cr) MOFs were successfully modified with ethylenediamine and tris(2-aminoethyl)amine, and the resulting materials were characterized using X-ray diffraction, FTIR, NMR, nitrogen sorption, and thermogravimetric analysis (TGA), confirming the functionalization. Although the functionalized MOFs exhibited a greater affinity for water compared to the unmodified MIL-101(Cr), they efficiently removed H<sub>2</sub>S under humid conditions without framework degradation, whereas the pristine material did not. This was demonstrated by TGA-MS and elemental analysis and confirmed by density functional theory calculations. The developed approach offers a promising pathway for the design of advanced sorbents tailored for H<sub>2</sub>S removal in industrial and environmental applications.</p>\",\"PeriodicalId\":55639,\"journal\":{\"name\":\"ACS Applied Engineering Materials\",\"volume\":\"2 11\",\"pages\":\"2619–2625 2619–2625\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaenm.4c00535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaenm.4c00535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Appending Polyamines on Metal–Organic Frameworks as an Efficient Strategy for Selective Removal of H2S under Humid Conditions
Removal of highly toxic and corrosive hydrogen sulfide from gas flows is of paramount importance for controlling the environment and in several industrial processes. This contribution reports a straightforward strategy to engineer sorbents for efficient hydrogen sulfide removal under humid conditions by functionalizing the open metal sites of metal–organic frameworks (MOFs) with polyamines. MIL-101(Cr) MOFs were successfully modified with ethylenediamine and tris(2-aminoethyl)amine, and the resulting materials were characterized using X-ray diffraction, FTIR, NMR, nitrogen sorption, and thermogravimetric analysis (TGA), confirming the functionalization. Although the functionalized MOFs exhibited a greater affinity for water compared to the unmodified MIL-101(Cr), they efficiently removed H2S under humid conditions without framework degradation, whereas the pristine material did not. This was demonstrated by TGA-MS and elemental analysis and confirmed by density functional theory calculations. The developed approach offers a promising pathway for the design of advanced sorbents tailored for H2S removal in industrial and environmental applications.
期刊介绍:
ACS Applied Engineering Materials is an international and interdisciplinary forum devoted to original research covering all aspects of engineered materials complementing the ACS Applied Materials portfolio. Papers that describe theory simulation modeling or machine learning assisted design of materials and that provide new insights into engineering applications are welcomed. The journal also considers experimental research that includes novel methods of preparing characterizing and evaluating new materials designed for timely applications. With its focus on innovative applications ACS Applied Engineering Materials also complements and expands the scope of existing ACS publications that focus on materials science discovery including Biomacromolecules Chemistry of Materials Crystal Growth & Design Industrial & Engineering Chemistry Research Inorganic Chemistry Langmuir and Macromolecules.The scope of ACS Applied Engineering Materials includes high quality research of an applied nature that integrates knowledge in materials science engineering physics mechanics and chemistry.