Suji Kim, Jiyoon Park, Yong Hui Pi, Jun Su Park, Yern Seung Kim, Kai Wu, Guihua Yu* and Joohyung Lee*,
{"title":"使用聚乙烯吡咯烷酮对液态金属进行简便的低氧化乳化,以获得高粘弹性导热浆料","authors":"Suji Kim, Jiyoon Park, Yong Hui Pi, Jun Su Park, Yern Seung Kim, Kai Wu, Guihua Yu* and Joohyung Lee*, ","doi":"10.1021/acsaenm.4c0063710.1021/acsaenm.4c00637","DOIUrl":null,"url":null,"abstract":"<p >Low-melting-point metals, known as liquid metals (LMs), have recently attracted significant interest owing to their high conductivity and fluidity. “Emulsification” of LMs into colloidal microdroplets in immiscible carrier fluids confers a variety of unique opportunities in terms of their processability as well as functionality; however, achieving emulsification at high LM loads while significantly modifying the rheology of the resulting emulsions presents a considerable challenge. Furthermore, the formation of a surface oxide skin on emulsified LM droplets complicates their interfacial dynamics and often deteriorates the performance of the resulting emulsions. In this study, we demonstrate that polyvinylpyrrolidone (PVP), which can coordinate-bond with LM, markedly increases the emulsification efficiency of LM in ethanol (EtOH), thereby enabling the formation of highly viscoelastic LM-in-EtOH emulsion pastes via simple shear mixing using a mortar and pestle. The growth of the oxide layer is controlled by the surface-adsorbed PVPs, which form an interdroplet percolation network. The resulting PVP-mediated “structured” emulsions exhibit significantly higher thermal conductivities than their additive-free counterparts under a given LM load, owing to the formation of an effective thermal transport network of interconnected conductive LM droplets with controlled growth of insulating oxide skin. Industry-relevant blade coating using these LM-in-EtOH emulsions is demonstrated, during which LM droplets coated on nonstretchable substrates readily develop anisotropy under applied shear, which may be potentially useful for directed thermal transport in relevant applications. Lastly, the performance of the LM droplets coated with PVP as thermal interface materials is evaluated.</p>","PeriodicalId":55639,"journal":{"name":"ACS Applied Engineering Materials","volume":"2 11","pages":"2705–2718 2705–2718"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile Low-Oxidation Emulsification of Liquid Metal Using Polyvinylpyrrolidone for Highly Viscoelastic Heat Conductive Pastes\",\"authors\":\"Suji Kim, Jiyoon Park, Yong Hui Pi, Jun Su Park, Yern Seung Kim, Kai Wu, Guihua Yu* and Joohyung Lee*, \",\"doi\":\"10.1021/acsaenm.4c0063710.1021/acsaenm.4c00637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Low-melting-point metals, known as liquid metals (LMs), have recently attracted significant interest owing to their high conductivity and fluidity. “Emulsification” of LMs into colloidal microdroplets in immiscible carrier fluids confers a variety of unique opportunities in terms of their processability as well as functionality; however, achieving emulsification at high LM loads while significantly modifying the rheology of the resulting emulsions presents a considerable challenge. Furthermore, the formation of a surface oxide skin on emulsified LM droplets complicates their interfacial dynamics and often deteriorates the performance of the resulting emulsions. In this study, we demonstrate that polyvinylpyrrolidone (PVP), which can coordinate-bond with LM, markedly increases the emulsification efficiency of LM in ethanol (EtOH), thereby enabling the formation of highly viscoelastic LM-in-EtOH emulsion pastes via simple shear mixing using a mortar and pestle. The growth of the oxide layer is controlled by the surface-adsorbed PVPs, which form an interdroplet percolation network. The resulting PVP-mediated “structured” emulsions exhibit significantly higher thermal conductivities than their additive-free counterparts under a given LM load, owing to the formation of an effective thermal transport network of interconnected conductive LM droplets with controlled growth of insulating oxide skin. Industry-relevant blade coating using these LM-in-EtOH emulsions is demonstrated, during which LM droplets coated on nonstretchable substrates readily develop anisotropy under applied shear, which may be potentially useful for directed thermal transport in relevant applications. Lastly, the performance of the LM droplets coated with PVP as thermal interface materials is evaluated.</p>\",\"PeriodicalId\":55639,\"journal\":{\"name\":\"ACS Applied Engineering Materials\",\"volume\":\"2 11\",\"pages\":\"2705–2718 2705–2718\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaenm.4c00637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaenm.4c00637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facile Low-Oxidation Emulsification of Liquid Metal Using Polyvinylpyrrolidone for Highly Viscoelastic Heat Conductive Pastes
Low-melting-point metals, known as liquid metals (LMs), have recently attracted significant interest owing to their high conductivity and fluidity. “Emulsification” of LMs into colloidal microdroplets in immiscible carrier fluids confers a variety of unique opportunities in terms of their processability as well as functionality; however, achieving emulsification at high LM loads while significantly modifying the rheology of the resulting emulsions presents a considerable challenge. Furthermore, the formation of a surface oxide skin on emulsified LM droplets complicates their interfacial dynamics and often deteriorates the performance of the resulting emulsions. In this study, we demonstrate that polyvinylpyrrolidone (PVP), which can coordinate-bond with LM, markedly increases the emulsification efficiency of LM in ethanol (EtOH), thereby enabling the formation of highly viscoelastic LM-in-EtOH emulsion pastes via simple shear mixing using a mortar and pestle. The growth of the oxide layer is controlled by the surface-adsorbed PVPs, which form an interdroplet percolation network. The resulting PVP-mediated “structured” emulsions exhibit significantly higher thermal conductivities than their additive-free counterparts under a given LM load, owing to the formation of an effective thermal transport network of interconnected conductive LM droplets with controlled growth of insulating oxide skin. Industry-relevant blade coating using these LM-in-EtOH emulsions is demonstrated, during which LM droplets coated on nonstretchable substrates readily develop anisotropy under applied shear, which may be potentially useful for directed thermal transport in relevant applications. Lastly, the performance of the LM droplets coated with PVP as thermal interface materials is evaluated.
期刊介绍:
ACS Applied Engineering Materials is an international and interdisciplinary forum devoted to original research covering all aspects of engineered materials complementing the ACS Applied Materials portfolio. Papers that describe theory simulation modeling or machine learning assisted design of materials and that provide new insights into engineering applications are welcomed. The journal also considers experimental research that includes novel methods of preparing characterizing and evaluating new materials designed for timely applications. With its focus on innovative applications ACS Applied Engineering Materials also complements and expands the scope of existing ACS publications that focus on materials science discovery including Biomacromolecules Chemistry of Materials Crystal Growth & Design Industrial & Engineering Chemistry Research Inorganic Chemistry Langmuir and Macromolecules.The scope of ACS Applied Engineering Materials includes high quality research of an applied nature that integrates knowledge in materials science engineering physics mechanics and chemistry.