Xiaoshuang Dai, Shuang Wang*, Xiang Liu*, Junfeng Jiang, Kun Liu, Ziyihui Wang, Ke Tan, Jianying Jing, Hongyu Liu, Tianhua Xu and Tiegen Liu,
{"title":"用于葡萄糖检测的电化学-分子印迹聚合物增强型损耗模共振光纤","authors":"Xiaoshuang Dai, Shuang Wang*, Xiang Liu*, Junfeng Jiang, Kun Liu, Ziyihui Wang, Ke Tan, Jianying Jing, Hongyu Liu, Tianhua Xu and Tiegen Liu, ","doi":"10.1021/acssensors.4c0203210.1021/acssensors.4c02032","DOIUrl":null,"url":null,"abstract":"<p >Noninvasive glucose sensors are emergent intelligent sensors for analyzing glucose concentration in body fluids within invasion-free conditions. Conventional glucose sensors are often limited by a number of issues such as invasive and real-time detection, creating challenges in continuously characterizing biomarkers or subtle binding dynamics. In this study, we introduce an efficient lossy mode resonance (LMR) optical fiber sensor incorporating the molecularly imprinted polymers (MIPs) to amplify glucose molecules. A molecularly imprinted recognition platform is created on an LMR sensor surface through a convenient one-step electrochemical (EC) polymerization method, in which 3-Aminophenylboric acid and glucose serve as the functional monomer and template molecule, respectively. LMR resonance wavelength shift induced by the coupling of the optical lossy mode and the fiber core mode is employed as the parameter to characterize biomolecules. Due to its high sensitivity to surrounding environment changes, a limit of detection (LOD) of 4.62 × 10<sup>–2</sup> μmol/L for glucose can be achieved by this optical fiber sensor. Additionally, the prepared EC-MIPs LMR sensor is capable of detecting glucose molecules in human saliva samples with high accuracy, endowing its potential for practical applications.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"9 11","pages":"6185–6196 6185–6196"},"PeriodicalIF":9.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lossy Mode Resonance Optical Fiber Enhanced by Electrochemical-Molecularly Imprinted Polymers for Glucose Detection\",\"authors\":\"Xiaoshuang Dai, Shuang Wang*, Xiang Liu*, Junfeng Jiang, Kun Liu, Ziyihui Wang, Ke Tan, Jianying Jing, Hongyu Liu, Tianhua Xu and Tiegen Liu, \",\"doi\":\"10.1021/acssensors.4c0203210.1021/acssensors.4c02032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Noninvasive glucose sensors are emergent intelligent sensors for analyzing glucose concentration in body fluids within invasion-free conditions. Conventional glucose sensors are often limited by a number of issues such as invasive and real-time detection, creating challenges in continuously characterizing biomarkers or subtle binding dynamics. In this study, we introduce an efficient lossy mode resonance (LMR) optical fiber sensor incorporating the molecularly imprinted polymers (MIPs) to amplify glucose molecules. A molecularly imprinted recognition platform is created on an LMR sensor surface through a convenient one-step electrochemical (EC) polymerization method, in which 3-Aminophenylboric acid and glucose serve as the functional monomer and template molecule, respectively. LMR resonance wavelength shift induced by the coupling of the optical lossy mode and the fiber core mode is employed as the parameter to characterize biomolecules. Due to its high sensitivity to surrounding environment changes, a limit of detection (LOD) of 4.62 × 10<sup>–2</sup> μmol/L for glucose can be achieved by this optical fiber sensor. Additionally, the prepared EC-MIPs LMR sensor is capable of detecting glucose molecules in human saliva samples with high accuracy, endowing its potential for practical applications.</p>\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"9 11\",\"pages\":\"6185–6196 6185–6196\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssensors.4c02032\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.4c02032","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Lossy Mode Resonance Optical Fiber Enhanced by Electrochemical-Molecularly Imprinted Polymers for Glucose Detection
Noninvasive glucose sensors are emergent intelligent sensors for analyzing glucose concentration in body fluids within invasion-free conditions. Conventional glucose sensors are often limited by a number of issues such as invasive and real-time detection, creating challenges in continuously characterizing biomarkers or subtle binding dynamics. In this study, we introduce an efficient lossy mode resonance (LMR) optical fiber sensor incorporating the molecularly imprinted polymers (MIPs) to amplify glucose molecules. A molecularly imprinted recognition platform is created on an LMR sensor surface through a convenient one-step electrochemical (EC) polymerization method, in which 3-Aminophenylboric acid and glucose serve as the functional monomer and template molecule, respectively. LMR resonance wavelength shift induced by the coupling of the optical lossy mode and the fiber core mode is employed as the parameter to characterize biomolecules. Due to its high sensitivity to surrounding environment changes, a limit of detection (LOD) of 4.62 × 10–2 μmol/L for glucose can be achieved by this optical fiber sensor. Additionally, the prepared EC-MIPs LMR sensor is capable of detecting glucose molecules in human saliva samples with high accuracy, endowing its potential for practical applications.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.