收缩细胞中应力纤维的定位可最大限度地减少内部机械应力

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lukas Riedel , Valentin Wössner , Dominic Kempf , Falko Ziebert , Peter Bastian , Ulrich S. Schwarz
{"title":"收缩细胞中应力纤维的定位可最大限度地减少内部机械应力","authors":"Lukas Riedel ,&nbsp;Valentin Wössner ,&nbsp;Dominic Kempf ,&nbsp;Falko Ziebert ,&nbsp;Peter Bastian ,&nbsp;Ulrich S. Schwarz","doi":"10.1016/j.jmps.2024.105950","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanics of animal cells is strongly determined by stress fibers, which are contractile filament bundles that form dynamically in response to extracellular cues. Stress fibers allow the cell to adapt its mechanics to environmental conditions and to protect it from structural damage. While the physical description of single stress fibers is well-developed, much less is known about their spatial distribution on the level of whole cells. Here, we combine a finite element method for one-dimensional fibers embedded in an elastic bulk medium with dynamical rules for stress fiber formation based on genetic algorithms. We postulate that their main goal is to achieve minimal mechanical stress in the bulk material with as few fibers as possible. The fiber positions and configurations resulting from this optimization task alone are in good agreement with those found in experiments where cells in 3D-scaffolds were mechanically strained at one attachment point. For optimized configurations, we find that stress fibers typically run through the cell in a diagonal fashion, similar to reinforcement strategies used for composite material.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"195 ","pages":"Article 105950"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The positioning of stress fibers in contractile cells minimizes internal mechanical stress\",\"authors\":\"Lukas Riedel ,&nbsp;Valentin Wössner ,&nbsp;Dominic Kempf ,&nbsp;Falko Ziebert ,&nbsp;Peter Bastian ,&nbsp;Ulrich S. Schwarz\",\"doi\":\"10.1016/j.jmps.2024.105950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanics of animal cells is strongly determined by stress fibers, which are contractile filament bundles that form dynamically in response to extracellular cues. Stress fibers allow the cell to adapt its mechanics to environmental conditions and to protect it from structural damage. While the physical description of single stress fibers is well-developed, much less is known about their spatial distribution on the level of whole cells. Here, we combine a finite element method for one-dimensional fibers embedded in an elastic bulk medium with dynamical rules for stress fiber formation based on genetic algorithms. We postulate that their main goal is to achieve minimal mechanical stress in the bulk material with as few fibers as possible. The fiber positions and configurations resulting from this optimization task alone are in good agreement with those found in experiments where cells in 3D-scaffolds were mechanically strained at one attachment point. For optimized configurations, we find that stress fibers typically run through the cell in a diagonal fashion, similar to reinforcement strategies used for composite material.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"195 \",\"pages\":\"Article 105950\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624004162\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624004162","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

动物细胞的机械结构在很大程度上由应力纤维决定,应力纤维是一种收缩丝束,根据细胞外线索动态形成。应力纤维使细胞的力学结构适应环境条件,并保护细胞免受结构损伤。虽然对单个应力纤维的物理描述已经非常完善,但对其在整个细胞水平上的空间分布却知之甚少。在这里,我们将嵌入弹性体介质中的一维纤维的有限元方法与基于遗传算法的应力纤维形成动力学规则相结合。我们推测,它们的主要目标是以尽可能少的纤维来实现散装材料中最小的机械应力。仅从这一优化任务中得出的纤维位置和配置,就与三维支架中的细胞在一个附着点上受到机械应力的实验结果十分吻合。对于优化配置,我们发现应力纤维通常以对角线方式穿过细胞,这与复合材料的加固策略类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The positioning of stress fibers in contractile cells minimizes internal mechanical stress

The positioning of stress fibers in contractile cells minimizes internal mechanical stress
The mechanics of animal cells is strongly determined by stress fibers, which are contractile filament bundles that form dynamically in response to extracellular cues. Stress fibers allow the cell to adapt its mechanics to environmental conditions and to protect it from structural damage. While the physical description of single stress fibers is well-developed, much less is known about their spatial distribution on the level of whole cells. Here, we combine a finite element method for one-dimensional fibers embedded in an elastic bulk medium with dynamical rules for stress fiber formation based on genetic algorithms. We postulate that their main goal is to achieve minimal mechanical stress in the bulk material with as few fibers as possible. The fiber positions and configurations resulting from this optimization task alone are in good agreement with those found in experiments where cells in 3D-scaffolds were mechanically strained at one attachment point. For optimized configurations, we find that stress fibers typically run through the cell in a diagonal fashion, similar to reinforcement strategies used for composite material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信