速率敏感多孔韧性材料中的应变局部化

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alok Tripathy, Shyam M. Keralavarma
{"title":"速率敏感多孔韧性材料中的应变局部化","authors":"Alok Tripathy, Shyam M. Keralavarma","doi":"10.1016/j.jmps.2024.105957","DOIUrl":null,"url":null,"abstract":"Ductile failure by the onset of strain localization in rate sensitive porous materials is investigated using a linear perturbation stability analysis. A micromechanics-based constitutive model accounting for inhomogeneous yielding at the micro-scale, due to plastic strain concentration in the inter-void ligaments, is used. Strain and strain rate hardening of the material is accounted for using a phenomenological viscoplastic extension of the model. Unlike in earlier studies employing a rate-dependent model, an analytical closed form expression for the critical value of the hardening modulus at the onset of localization is derived. The predicted shape of the failure locus under proportional loading is shown to be consistent with known results in the literature for the loading path dependence of ductile failure. The model predicted failure loci are validated by comparison with mesoscopic unit cell model simulations of void growth in a viscoplastic power law hardening material. It is shown that the failure strains predicted by the model as a function of the hardening parameters are in good agreement with the strains to the onset of elastic unloading in the cell model simulations, signifying the onset of void coalescence at the micro-scale.","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"49 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain localization in rate sensitive porous ductile materials\",\"authors\":\"Alok Tripathy, Shyam M. Keralavarma\",\"doi\":\"10.1016/j.jmps.2024.105957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ductile failure by the onset of strain localization in rate sensitive porous materials is investigated using a linear perturbation stability analysis. A micromechanics-based constitutive model accounting for inhomogeneous yielding at the micro-scale, due to plastic strain concentration in the inter-void ligaments, is used. Strain and strain rate hardening of the material is accounted for using a phenomenological viscoplastic extension of the model. Unlike in earlier studies employing a rate-dependent model, an analytical closed form expression for the critical value of the hardening modulus at the onset of localization is derived. The predicted shape of the failure locus under proportional loading is shown to be consistent with known results in the literature for the loading path dependence of ductile failure. The model predicted failure loci are validated by comparison with mesoscopic unit cell model simulations of void growth in a viscoplastic power law hardening material. It is shown that the failure strains predicted by the model as a function of the hardening parameters are in good agreement with the strains to the onset of elastic unloading in the cell model simulations, signifying the onset of void coalescence at the micro-scale.\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmps.2024.105957\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jmps.2024.105957","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过线性扰动稳定性分析,研究了速率敏感多孔材料中应变局部化的韧性破坏。采用了一个基于微观力学的构成模型,该模型考虑到了由于空隙间韧带的塑性应变集中而导致的微观尺度上的不均匀屈服。材料的应变和应变速率硬化是通过该模型的现象学粘塑性扩展来考虑的。与之前采用速率依赖模型的研究不同,该模型推导出了局部硬化开始时硬化模量临界值的分析封闭式表达式。结果表明,在比例加载条件下预测的破坏位置形状与文献中已知的韧性破坏加载路径依赖性结果一致。通过与粘塑性幂律硬化材料中空隙增长的介观单元模型模拟进行比较,验证了模型预测的破坏位置。结果表明,模型预测的失效应变作为硬化参数的函数,与晶胞模型模拟中弹性卸载开始时的应变非常吻合,这标志着微观尺度上空隙凝聚的开始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strain localization in rate sensitive porous ductile materials
Ductile failure by the onset of strain localization in rate sensitive porous materials is investigated using a linear perturbation stability analysis. A micromechanics-based constitutive model accounting for inhomogeneous yielding at the micro-scale, due to plastic strain concentration in the inter-void ligaments, is used. Strain and strain rate hardening of the material is accounted for using a phenomenological viscoplastic extension of the model. Unlike in earlier studies employing a rate-dependent model, an analytical closed form expression for the critical value of the hardening modulus at the onset of localization is derived. The predicted shape of the failure locus under proportional loading is shown to be consistent with known results in the literature for the loading path dependence of ductile failure. The model predicted failure loci are validated by comparison with mesoscopic unit cell model simulations of void growth in a viscoplastic power law hardening material. It is shown that the failure strains predicted by the model as a function of the hardening parameters are in good agreement with the strains to the onset of elastic unloading in the cell model simulations, signifying the onset of void coalescence at the micro-scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信