{"title":"绘制知识图谱:科学主题分析将研究人员定位在学科景观中","authors":"Radim Hladík , Yann Renisio","doi":"10.1016/j.poetic.2024.101950","DOIUrl":null,"url":null,"abstract":"<div><div>The study presents a new approach for constructing an epistemological coordinate system that locates individual researchers within the disciplinary landscape of science. Drawing on a comprehensive national dataset of scientific outputs, we build a topic model based on a semantic network of publications and terms derived from textual content comprising titles, abstracts, and keywords. Compositional data transformation applied to the topic model enables a geometric analysis of topics across disciplines. The design yields four important results for addressing the gap between knowledge and knowledge-producers. (1) Hierarchical clustering confirms an alignment between traditional disciplinary classification and our empirical, bottom-up topic model. (2) Principal component analysis reveals three axes – Culture–Nature, Life–Non-life, and Materials–Methods – that primarily structure this scientific knowledge space. (3) The projection of individual researchers via their topic portfolios allows to locate them relationally on these three continuous measures of epistemological distinctions. (4) The robustness of our approach is validated by examining the links between researchers’ topic orientation and supplementary variables such as publication practices, gender, institutional affiliations, and funding sources. Our method could inform science policy and evaluation practices, as well as be extended to uncover associations between products and producers in other cultural fields.</div></div>","PeriodicalId":47900,"journal":{"name":"Poetics","volume":"108 ","pages":"Article 101950"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping knowledge: Topic analysis of science locates researchers in disciplinary landscape\",\"authors\":\"Radim Hladík , Yann Renisio\",\"doi\":\"10.1016/j.poetic.2024.101950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study presents a new approach for constructing an epistemological coordinate system that locates individual researchers within the disciplinary landscape of science. Drawing on a comprehensive national dataset of scientific outputs, we build a topic model based on a semantic network of publications and terms derived from textual content comprising titles, abstracts, and keywords. Compositional data transformation applied to the topic model enables a geometric analysis of topics across disciplines. The design yields four important results for addressing the gap between knowledge and knowledge-producers. (1) Hierarchical clustering confirms an alignment between traditional disciplinary classification and our empirical, bottom-up topic model. (2) Principal component analysis reveals three axes – Culture–Nature, Life–Non-life, and Materials–Methods – that primarily structure this scientific knowledge space. (3) The projection of individual researchers via their topic portfolios allows to locate them relationally on these three continuous measures of epistemological distinctions. (4) The robustness of our approach is validated by examining the links between researchers’ topic orientation and supplementary variables such as publication practices, gender, institutional affiliations, and funding sources. Our method could inform science policy and evaluation practices, as well as be extended to uncover associations between products and producers in other cultural fields.</div></div>\",\"PeriodicalId\":47900,\"journal\":{\"name\":\"Poetics\",\"volume\":\"108 \",\"pages\":\"Article 101950\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Poetics\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304422X24000895\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LITERATURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poetics","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304422X24000895","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LITERATURE","Score":null,"Total":0}
Mapping knowledge: Topic analysis of science locates researchers in disciplinary landscape
The study presents a new approach for constructing an epistemological coordinate system that locates individual researchers within the disciplinary landscape of science. Drawing on a comprehensive national dataset of scientific outputs, we build a topic model based on a semantic network of publications and terms derived from textual content comprising titles, abstracts, and keywords. Compositional data transformation applied to the topic model enables a geometric analysis of topics across disciplines. The design yields four important results for addressing the gap between knowledge and knowledge-producers. (1) Hierarchical clustering confirms an alignment between traditional disciplinary classification and our empirical, bottom-up topic model. (2) Principal component analysis reveals three axes – Culture–Nature, Life–Non-life, and Materials–Methods – that primarily structure this scientific knowledge space. (3) The projection of individual researchers via their topic portfolios allows to locate them relationally on these three continuous measures of epistemological distinctions. (4) The robustness of our approach is validated by examining the links between researchers’ topic orientation and supplementary variables such as publication practices, gender, institutional affiliations, and funding sources. Our method could inform science policy and evaluation practices, as well as be extended to uncover associations between products and producers in other cultural fields.
期刊介绍:
Poetics is an interdisciplinary journal of theoretical and empirical research on culture, the media and the arts. Particularly welcome are papers that make an original contribution to the major disciplines - sociology, psychology, media and communication studies, and economics - within which promising lines of research on culture, media and the arts have been developed.