基于片上锗光电效应的低功率阈值高速光调谐射频信号发生器

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hengsong Yue, Yuan Yan, Bo Xiong, Tao Chu
{"title":"基于片上锗光电效应的低功率阈值高速光调谐射频信号发生器","authors":"Hengsong Yue, Yuan Yan, Bo Xiong, Tao Chu","doi":"10.1021/acsphotonics.4c01356","DOIUrl":null,"url":null,"abstract":"Radio frequency (RF) signal modulation and generation are crucial technologies for advanced radar systems and high-speed wireless communications. Compared with traditional electronic RF modulators, optically tunable RF modulators offer a wide bandwidth, rapid response, and dynamic tuning, among other features. These characteristics render these modulators viable solutions for satisfying the evolving demands of modern wireless communication systems. However, their practical applications are challenging due to their lack of scalability and compactness, as well as their high optical power requirements. This study demonstrates the generation of optically tunable microwave signals using an optically tunable silicon-based RF modulator. The optical tuning was achieved through the photoelectric effect of the germanium absorption region on a silicon photonic platform. When light is incident on the Ge absorption region, it generates charge carriers, thereby altering the equivalent circuit parameters of the device. Consequently, the frequency response of the RF modulators is altered. This effect was used for the generation of amplitude-frequency coded microwave signals at 1, 2.5, and 5 MHz. Both the optical power required for tuning and the response speed are orders of magnitude lower than those of free-space-illumination-based devices. Additionally, the generation of microwave signals was demonstrated by applying this modulator to an optically tunable RF oscillator, with a frequency-tuning range from 1 to 14.5 GHz.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"34 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Speed Optically Tunable RF Signal Generation with Low Power Threshold Based on On-Chip Germanium Photoelectric Effect\",\"authors\":\"Hengsong Yue, Yuan Yan, Bo Xiong, Tao Chu\",\"doi\":\"10.1021/acsphotonics.4c01356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio frequency (RF) signal modulation and generation are crucial technologies for advanced radar systems and high-speed wireless communications. Compared with traditional electronic RF modulators, optically tunable RF modulators offer a wide bandwidth, rapid response, and dynamic tuning, among other features. These characteristics render these modulators viable solutions for satisfying the evolving demands of modern wireless communication systems. However, their practical applications are challenging due to their lack of scalability and compactness, as well as their high optical power requirements. This study demonstrates the generation of optically tunable microwave signals using an optically tunable silicon-based RF modulator. The optical tuning was achieved through the photoelectric effect of the germanium absorption region on a silicon photonic platform. When light is incident on the Ge absorption region, it generates charge carriers, thereby altering the equivalent circuit parameters of the device. Consequently, the frequency response of the RF modulators is altered. This effect was used for the generation of amplitude-frequency coded microwave signals at 1, 2.5, and 5 MHz. Both the optical power required for tuning and the response speed are orders of magnitude lower than those of free-space-illumination-based devices. Additionally, the generation of microwave signals was demonstrated by applying this modulator to an optically tunable RF oscillator, with a frequency-tuning range from 1 to 14.5 GHz.\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphotonics.4c01356\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01356","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

射频(RF)信号调制和生成是先进雷达系统和高速无线通信的关键技术。与传统的电子射频调制器相比,光学可调谐射频调制器具有带宽宽、响应快和动态调谐等特点。这些特点使这些调制器成为满足现代无线通信系统不断发展的需求的可行解决方案。然而,由于缺乏可扩展性和紧凑性,以及对光功率的高要求,它们的实际应用具有挑战性。本研究展示了利用光学可调硅基射频调制器产生光学可调微波信号的方法。光学调谐是通过硅光子平台上锗吸收区的光电效应实现的。当光线入射到锗吸收区时,会产生电荷载流子,从而改变器件的等效电路参数。因此,射频调制器的频率响应也随之改变。这种效应被用于产生 1、2.5 和 5 兆赫的振幅频率编码微波信号。调谐所需的光功率和响应速度都比基于自由空间照明的设备低几个数量级。此外,通过将该调制器应用于光学可调谐射频振荡器,还演示了微波信号的产生,频率调谐范围为 1 至 14.5 千兆赫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Speed Optically Tunable RF Signal Generation with Low Power Threshold Based on On-Chip Germanium Photoelectric Effect

High-Speed Optically Tunable RF Signal Generation with Low Power Threshold Based on On-Chip Germanium Photoelectric Effect
Radio frequency (RF) signal modulation and generation are crucial technologies for advanced radar systems and high-speed wireless communications. Compared with traditional electronic RF modulators, optically tunable RF modulators offer a wide bandwidth, rapid response, and dynamic tuning, among other features. These characteristics render these modulators viable solutions for satisfying the evolving demands of modern wireless communication systems. However, their practical applications are challenging due to their lack of scalability and compactness, as well as their high optical power requirements. This study demonstrates the generation of optically tunable microwave signals using an optically tunable silicon-based RF modulator. The optical tuning was achieved through the photoelectric effect of the germanium absorption region on a silicon photonic platform. When light is incident on the Ge absorption region, it generates charge carriers, thereby altering the equivalent circuit parameters of the device. Consequently, the frequency response of the RF modulators is altered. This effect was used for the generation of amplitude-frequency coded microwave signals at 1, 2.5, and 5 MHz. Both the optical power required for tuning and the response speed are orders of magnitude lower than those of free-space-illumination-based devices. Additionally, the generation of microwave signals was demonstrated by applying this modulator to an optically tunable RF oscillator, with a frequency-tuning range from 1 to 14.5 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信