通过在过氧化物纳米晶-聚甲基三氟丙基硅氧烷之间采用相互促进策略实现超稳定 X 射线成像

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei Zheng, Han Liu, Xiaoyu Liu, Ruirui Shi, Xinyi Han, Xiaojia Wang, Teng Long, Yuhai Zhang, Hua Wang, William W. Yu, Chuanjian Zhou
{"title":"通过在过氧化物纳米晶-聚甲基三氟丙基硅氧烷之间采用相互促进策略实现超稳定 X 射线成像","authors":"Wei Zheng, Han Liu, Xiaoyu Liu, Ruirui Shi, Xinyi Han, Xiaojia Wang, Teng Long, Yuhai Zhang, Hua Wang, William W. Yu, Chuanjian Zhou","doi":"10.1002/adfm.202418944","DOIUrl":null,"url":null,"abstract":"The instability of halide perovskite nanocrystals (PNCs) and related composite polymer films posed considerable challenges for application in flexible optoelectronic devices. Herein, perovskite nanocrystal-polymethyltrifluoropropylsiloxane (PNCs-PMFS) composites are developed that exhibit outstanding optical stability and irradiation resistance through a mutually reinforcing strategy. The photoluminescence (PL) intensity of PNCs-PMFS remained stable after four heating cycles, whereas perovskite nanocrystal-polydimethylsiloxane (PNCs-PDMS) composites exhibited a 31% decrease in PL intensity. Moreover, PNCs-PMFS demonstrated superior luminescence stability under UV and X-ray irradiation due to strong ion-dipole interactions between PNCs and trifluoromethyl (CF<sub>3</sub>) dipoles. Under γ-ray irradiation (300 kGy), PNCs-PMFS retained 73% (2.86 MPa) of the initial mechanical strength, while PMFS without PNCs retained only 51%. This enhancement is attributed to the effective reduction of free radical concentration in the system by PNCs, as confirmed by electron spin resonance (ESR) and curing curve. Density-functional theory (DFT) calculations further indicated that PNCs adsorbed free radicals, thereby facilitating interfacial charge transfer and forming a stable resonance structure. These advancements enabled PNCs-PMFS to serve as scintillation screens for X-ray detection and imaging, achieving a spatial resolution of 19.0 lp mm<sup>−1</sup> and a detection limit of 3.78 µGy s<sup>−1</sup>, offering novel insights for designing of X-ray detectors in high-energy radiation environments.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"32 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra Stable X-Ray Imaging Through a Mutually Reinforcing Strategy Between Perovskite Nanocrystal-Polymethyltrifluoropropylsiloxane\",\"authors\":\"Wei Zheng, Han Liu, Xiaoyu Liu, Ruirui Shi, Xinyi Han, Xiaojia Wang, Teng Long, Yuhai Zhang, Hua Wang, William W. Yu, Chuanjian Zhou\",\"doi\":\"10.1002/adfm.202418944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The instability of halide perovskite nanocrystals (PNCs) and related composite polymer films posed considerable challenges for application in flexible optoelectronic devices. Herein, perovskite nanocrystal-polymethyltrifluoropropylsiloxane (PNCs-PMFS) composites are developed that exhibit outstanding optical stability and irradiation resistance through a mutually reinforcing strategy. The photoluminescence (PL) intensity of PNCs-PMFS remained stable after four heating cycles, whereas perovskite nanocrystal-polydimethylsiloxane (PNCs-PDMS) composites exhibited a 31% decrease in PL intensity. Moreover, PNCs-PMFS demonstrated superior luminescence stability under UV and X-ray irradiation due to strong ion-dipole interactions between PNCs and trifluoromethyl (CF<sub>3</sub>) dipoles. Under γ-ray irradiation (300 kGy), PNCs-PMFS retained 73% (2.86 MPa) of the initial mechanical strength, while PMFS without PNCs retained only 51%. This enhancement is attributed to the effective reduction of free radical concentration in the system by PNCs, as confirmed by electron spin resonance (ESR) and curing curve. Density-functional theory (DFT) calculations further indicated that PNCs adsorbed free radicals, thereby facilitating interfacial charge transfer and forming a stable resonance structure. These advancements enabled PNCs-PMFS to serve as scintillation screens for X-ray detection and imaging, achieving a spatial resolution of 19.0 lp mm<sup>−1</sup> and a detection limit of 3.78 µGy s<sup>−1</sup>, offering novel insights for designing of X-ray detectors in high-energy radiation environments.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202418944\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202418944","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

卤化物过氧化物纳米晶体(PNCs)和相关复合聚合物薄膜的不稳定性给柔性光电器件的应用带来了巨大挑战。在此,我们开发出了透辉石纳米晶-聚甲基三氟丙基硅氧烷(PNCs-PMFS)复合材料,通过相互增强的策略,该复合材料表现出了出色的光学稳定性和耐辐照性。经过四个加热周期后,PNCs-PMFS 的光致发光(PL)强度保持稳定,而过氧化物纳米晶-聚二甲基硅氧烷(PNCs-PDMS)复合材料的 PL 强度下降了 31%。此外,由于 PNCs 和三氟甲基(CF3)偶极子之间强烈的离子偶极子相互作用,PNCs-PMFS 在紫外线和 X 射线照射下表现出卓越的发光稳定性。在γ射线辐照(300 kGy)下,PNCs-PMFS 保持了初始机械强度的 73% (2.86 MPa),而不含 PNCs 的 PMFS 仅保持了 51%。电子自旋共振(ESR)和固化曲线证实,这种增强归因于 PNCs 有效降低了体系中的自由基浓度。密度泛函理论(DFT)计算进一步表明,PNCs 吸附了自由基,从而促进了界面电荷转移并形成了稳定的共振结构。这些进展使 PNCs-PMFS 能够用作 X 射线探测和成像的闪烁屏,空间分辨率达到 19.0 lp mm-1,探测极限为 3.78 µGy s-1,为在高能辐射环境中设计 X 射线探测器提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultra Stable X-Ray Imaging Through a Mutually Reinforcing Strategy Between Perovskite Nanocrystal-Polymethyltrifluoropropylsiloxane

Ultra Stable X-Ray Imaging Through a Mutually Reinforcing Strategy Between Perovskite Nanocrystal-Polymethyltrifluoropropylsiloxane
The instability of halide perovskite nanocrystals (PNCs) and related composite polymer films posed considerable challenges for application in flexible optoelectronic devices. Herein, perovskite nanocrystal-polymethyltrifluoropropylsiloxane (PNCs-PMFS) composites are developed that exhibit outstanding optical stability and irradiation resistance through a mutually reinforcing strategy. The photoluminescence (PL) intensity of PNCs-PMFS remained stable after four heating cycles, whereas perovskite nanocrystal-polydimethylsiloxane (PNCs-PDMS) composites exhibited a 31% decrease in PL intensity. Moreover, PNCs-PMFS demonstrated superior luminescence stability under UV and X-ray irradiation due to strong ion-dipole interactions between PNCs and trifluoromethyl (CF3) dipoles. Under γ-ray irradiation (300 kGy), PNCs-PMFS retained 73% (2.86 MPa) of the initial mechanical strength, while PMFS without PNCs retained only 51%. This enhancement is attributed to the effective reduction of free radical concentration in the system by PNCs, as confirmed by electron spin resonance (ESR) and curing curve. Density-functional theory (DFT) calculations further indicated that PNCs adsorbed free radicals, thereby facilitating interfacial charge transfer and forming a stable resonance structure. These advancements enabled PNCs-PMFS to serve as scintillation screens for X-ray detection and imaging, achieving a spatial resolution of 19.0 lp mm−1 and a detection limit of 3.78 µGy s−1, offering novel insights for designing of X-ray detectors in high-energy radiation environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信