{"title":"PAD 树脂:实时反馈、高效解决六价铬污染问题的智能吸附剂","authors":"Yuanhao Wang, Guihong Lan, Haiyan Qiu, Keyu Pu, Xiangming Liu, Ling Chen, Bo Xu","doi":"10.1016/j.jhazmat.2024.136563","DOIUrl":null,"url":null,"abstract":"To address the urgent issue of Cr(VI) pollution and protect aquatic ecosystems, we conducted an exhaustive investigation into a Poly(acrylamide-co-methacryloyloxyethyl trimethylammonium chloride) (PAD) resin synthesized through an environmentally friendly aqueous polymerization process. This resin not only boasts a high capacity for Cr(VI) removal but also incorporates a colorimetric sensing mechanism that visually transitions from transparent to yellow upon Cr(VI) adsorption, offering real-time, non-invasive monitoring and optimization of the remediation process. According to the Langmuir model, at a pH of 4.78 and a temperature of 15℃, the maximum adsorption capacity of PAD for Cr (VI) is 135.32<!-- --> <!-- -->mg/g. Its adsorption kinetics conform to a pseudo-first-order model and Langmuir isotherm, indicating uniform adsorption sites and favorable interactions. Thermodynamic analysis further reveals the spontaneous and exothermic nature of the adsorption process, making it suitable for large-scale applications at ambient temperatures.In natural lake water-based Cr(VI) simulated wastewater, PAD resin achieved a remarkable removal efficiency of 99.54% for 4.82<!-- --> <!-- -->mg/L Cr(VI) (The filling column had a diameter of 3<!-- --> <!-- -->cm and a height of 30<!-- --> <!-- -->cm; The PAD dosage was 1.6<!-- --> <!-- -->g, with a flow rate of 5<!-- --> <!-- -->ml/min and an adsorption time of 60<!-- --> <!-- -->minutes, at a neutral pH), effectively reducing residual Cr(VI) concentrations to 0.022<!-- --> <!-- -->mg/L, well under WHO limits (0.05<!-- --> <!-- -->mg/L). Additionally, its 93.68% capacity retention after four HCl regeneration cycles underscores economic feasibility & sustainability.In summary, PAD resin stands out as an innovative, high-performance, and intelligent Cr(VI) adsorbent that transcends the limitations of traditional adsorbents.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"24 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PAD Resin: An Intelligent Adsorbent for Solving Cr(VI) Pollution with Real-Time Feedback and High Efficiency\",\"authors\":\"Yuanhao Wang, Guihong Lan, Haiyan Qiu, Keyu Pu, Xiangming Liu, Ling Chen, Bo Xu\",\"doi\":\"10.1016/j.jhazmat.2024.136563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the urgent issue of Cr(VI) pollution and protect aquatic ecosystems, we conducted an exhaustive investigation into a Poly(acrylamide-co-methacryloyloxyethyl trimethylammonium chloride) (PAD) resin synthesized through an environmentally friendly aqueous polymerization process. This resin not only boasts a high capacity for Cr(VI) removal but also incorporates a colorimetric sensing mechanism that visually transitions from transparent to yellow upon Cr(VI) adsorption, offering real-time, non-invasive monitoring and optimization of the remediation process. According to the Langmuir model, at a pH of 4.78 and a temperature of 15℃, the maximum adsorption capacity of PAD for Cr (VI) is 135.32<!-- --> <!-- -->mg/g. Its adsorption kinetics conform to a pseudo-first-order model and Langmuir isotherm, indicating uniform adsorption sites and favorable interactions. Thermodynamic analysis further reveals the spontaneous and exothermic nature of the adsorption process, making it suitable for large-scale applications at ambient temperatures.In natural lake water-based Cr(VI) simulated wastewater, PAD resin achieved a remarkable removal efficiency of 99.54% for 4.82<!-- --> <!-- -->mg/L Cr(VI) (The filling column had a diameter of 3<!-- --> <!-- -->cm and a height of 30<!-- --> <!-- -->cm; The PAD dosage was 1.6<!-- --> <!-- -->g, with a flow rate of 5<!-- --> <!-- -->ml/min and an adsorption time of 60<!-- --> <!-- -->minutes, at a neutral pH), effectively reducing residual Cr(VI) concentrations to 0.022<!-- --> <!-- -->mg/L, well under WHO limits (0.05<!-- --> <!-- -->mg/L). Additionally, its 93.68% capacity retention after four HCl regeneration cycles underscores economic feasibility & sustainability.In summary, PAD resin stands out as an innovative, high-performance, and intelligent Cr(VI) adsorbent that transcends the limitations of traditional adsorbents.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.136563\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136563","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
PAD Resin: An Intelligent Adsorbent for Solving Cr(VI) Pollution with Real-Time Feedback and High Efficiency
To address the urgent issue of Cr(VI) pollution and protect aquatic ecosystems, we conducted an exhaustive investigation into a Poly(acrylamide-co-methacryloyloxyethyl trimethylammonium chloride) (PAD) resin synthesized through an environmentally friendly aqueous polymerization process. This resin not only boasts a high capacity for Cr(VI) removal but also incorporates a colorimetric sensing mechanism that visually transitions from transparent to yellow upon Cr(VI) adsorption, offering real-time, non-invasive monitoring and optimization of the remediation process. According to the Langmuir model, at a pH of 4.78 and a temperature of 15℃, the maximum adsorption capacity of PAD for Cr (VI) is 135.32 mg/g. Its adsorption kinetics conform to a pseudo-first-order model and Langmuir isotherm, indicating uniform adsorption sites and favorable interactions. Thermodynamic analysis further reveals the spontaneous and exothermic nature of the adsorption process, making it suitable for large-scale applications at ambient temperatures.In natural lake water-based Cr(VI) simulated wastewater, PAD resin achieved a remarkable removal efficiency of 99.54% for 4.82 mg/L Cr(VI) (The filling column had a diameter of 3 cm and a height of 30 cm; The PAD dosage was 1.6 g, with a flow rate of 5 ml/min and an adsorption time of 60 minutes, at a neutral pH), effectively reducing residual Cr(VI) concentrations to 0.022 mg/L, well under WHO limits (0.05 mg/L). Additionally, its 93.68% capacity retention after four HCl regeneration cycles underscores economic feasibility & sustainability.In summary, PAD resin stands out as an innovative, high-performance, and intelligent Cr(VI) adsorbent that transcends the limitations of traditional adsorbents.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.