Liying Chen , Lanfang Han , Fayuan Wang , Qi'ang Chen , Hongkai Huang , Jie Wang , Chuanxin Ma , Ke Sun , Matthias C. Rillig , Yakov Kuzyakov , Zhifeng Yang
{"title":"聚乳酸微塑料在不同稻田土壤中通过微生物过程诱导负引力并提高固碳效果","authors":"Liying Chen , Lanfang Han , Fayuan Wang , Qi'ang Chen , Hongkai Huang , Jie Wang , Chuanxin Ma , Ke Sun , Matthias C. Rillig , Yakov Kuzyakov , Zhifeng Yang","doi":"10.1016/j.soilbio.2024.109653","DOIUrl":null,"url":null,"abstract":"<div><div>Biodegradable microplastics (MPs), which are starting to be used in large quantities in croplands, may affect the mineralization of soil organic carbon (SOC). These priming effects induced by biodegradable MPs are a very new issue, and their mechanisms as well as consequences for various soils are nearly unknown. Using stable carbon isotope signature (δ<sup>13</sup>C), we quantified the priming effects by adding corn (C4 plant) -based polylactic acid (PLA, δ<sup>13</sup>C = 11.9‰) MPs to three paddy soils with solely C3 signature: Ferralsol, Alfisol and Mollisol at two rates (0.5 and 1.0 wt%, based on the mass of MPs). After the incubation (180 days), PLA-MPs reduced the SOC mineralization in all three soils, triggering a negative priming effect. This negative priming effect was strongest in Mollisol (210-220 mg CO<sub>2</sub>-C kg<sup>-1</sup>). The net C balance in Mollisol was positive and clearly higher than the C amounts initially added with PLA-MPs to soils, indicating C accrual. The two main mechanisms of the negative priming effects were: i) sorptive protection of SOC and especially dissolved organic carbon (DOC) by PLA-MPs, and ii) reduction of microbial biomass and fungal diversity after PLA-MPs addition. Additionally, “switching of microbial decomposition from SOC to PLA-MPs” was pronounced in Mollisol, indicated by more PLA-MPs being mineralized. PLA-MPs thus changed the soil C dynamics mediated in part by the changes of microbial biomass, diversity, and community composition, utilization switch to new resources and decrease of SOC mineralization, all of them leading to C accumulation in soil.</div></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"201 ","pages":"Article 109653"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polylactic acid microplastics induced negative priming and improved carbon sequestration via microbial processes in different paddy soils\",\"authors\":\"Liying Chen , Lanfang Han , Fayuan Wang , Qi'ang Chen , Hongkai Huang , Jie Wang , Chuanxin Ma , Ke Sun , Matthias C. Rillig , Yakov Kuzyakov , Zhifeng Yang\",\"doi\":\"10.1016/j.soilbio.2024.109653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biodegradable microplastics (MPs), which are starting to be used in large quantities in croplands, may affect the mineralization of soil organic carbon (SOC). These priming effects induced by biodegradable MPs are a very new issue, and their mechanisms as well as consequences for various soils are nearly unknown. Using stable carbon isotope signature (δ<sup>13</sup>C), we quantified the priming effects by adding corn (C4 plant) -based polylactic acid (PLA, δ<sup>13</sup>C = 11.9‰) MPs to three paddy soils with solely C3 signature: Ferralsol, Alfisol and Mollisol at two rates (0.5 and 1.0 wt%, based on the mass of MPs). After the incubation (180 days), PLA-MPs reduced the SOC mineralization in all three soils, triggering a negative priming effect. This negative priming effect was strongest in Mollisol (210-220 mg CO<sub>2</sub>-C kg<sup>-1</sup>). The net C balance in Mollisol was positive and clearly higher than the C amounts initially added with PLA-MPs to soils, indicating C accrual. The two main mechanisms of the negative priming effects were: i) sorptive protection of SOC and especially dissolved organic carbon (DOC) by PLA-MPs, and ii) reduction of microbial biomass and fungal diversity after PLA-MPs addition. Additionally, “switching of microbial decomposition from SOC to PLA-MPs” was pronounced in Mollisol, indicated by more PLA-MPs being mineralized. PLA-MPs thus changed the soil C dynamics mediated in part by the changes of microbial biomass, diversity, and community composition, utilization switch to new resources and decrease of SOC mineralization, all of them leading to C accumulation in soil.</div></div>\",\"PeriodicalId\":21888,\"journal\":{\"name\":\"Soil Biology & Biochemistry\",\"volume\":\"201 \",\"pages\":\"Article 109653\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Biology & Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038071724003456\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038071724003456","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Polylactic acid microplastics induced negative priming and improved carbon sequestration via microbial processes in different paddy soils
Biodegradable microplastics (MPs), which are starting to be used in large quantities in croplands, may affect the mineralization of soil organic carbon (SOC). These priming effects induced by biodegradable MPs are a very new issue, and their mechanisms as well as consequences for various soils are nearly unknown. Using stable carbon isotope signature (δ13C), we quantified the priming effects by adding corn (C4 plant) -based polylactic acid (PLA, δ13C = 11.9‰) MPs to three paddy soils with solely C3 signature: Ferralsol, Alfisol and Mollisol at two rates (0.5 and 1.0 wt%, based on the mass of MPs). After the incubation (180 days), PLA-MPs reduced the SOC mineralization in all three soils, triggering a negative priming effect. This negative priming effect was strongest in Mollisol (210-220 mg CO2-C kg-1). The net C balance in Mollisol was positive and clearly higher than the C amounts initially added with PLA-MPs to soils, indicating C accrual. The two main mechanisms of the negative priming effects were: i) sorptive protection of SOC and especially dissolved organic carbon (DOC) by PLA-MPs, and ii) reduction of microbial biomass and fungal diversity after PLA-MPs addition. Additionally, “switching of microbial decomposition from SOC to PLA-MPs” was pronounced in Mollisol, indicated by more PLA-MPs being mineralized. PLA-MPs thus changed the soil C dynamics mediated in part by the changes of microbial biomass, diversity, and community composition, utilization switch to new resources and decrease of SOC mineralization, all of them leading to C accumulation in soil.
期刊介绍:
Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.