生成式学习辅助健康状态估计,实现随机退役条件下的可持续电池回收

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shengyu Tao, Ruifei Ma, Zixi Zhao, Guangyuan Ma, Lin Su, Heng Chang, Yuou Chen, Haizhou Liu, Zheng Liang, Tingwei Cao, Haocheng Ji, Zhiyuan Han, Minyan Lu, Huixiong Yang, Zongguo Wen, Jianhua Yao, Rong Yu, Guodan Wei, Yang Li, Xuan Zhang, Tingyang Xu, Guangmin Zhou
{"title":"生成式学习辅助健康状态估计,实现随机退役条件下的可持续电池回收","authors":"Shengyu Tao, Ruifei Ma, Zixi Zhao, Guangyuan Ma, Lin Su, Heng Chang, Yuou Chen, Haizhou Liu, Zheng Liang, Tingwei Cao, Haocheng Ji, Zhiyuan Han, Minyan Lu, Huixiong Yang, Zongguo Wen, Jianhua Yao, Rong Yu, Guodan Wei, Yang Li, Xuan Zhang, Tingyang Xu, Guangmin Zhou","doi":"10.1038/s41467-024-54454-0","DOIUrl":null,"url":null,"abstract":"<p>Rapid and accurate state of health (SOH) estimation of retired batteries is a crucial pretreatment for reuse and recycling. However, data-driven methods require exhaustive data curation under random SOH and state of charge (SOC) retirement conditions. Here, we show that the generative learning-assisted SOH estimation is promising in alleviating data scarcity and heterogeneity challenges, validated through a pulse injection dataset of 2700 retired lithium-ion battery samples, covering 3 cathode material types, 3 physical formats, 4 capacity designs, and 4 historical usages with 10 SOC levels. Using generated data, a regressor realizes accurate SOH estimations, with mean absolute percentage errors below 6% under unseen SOC. We predict that assuming uniform deployment of the proposed technique, this would save 4.9 billion USD in electricity costs and 35.8 billion kg CO<sub>2</sub> emissions by mitigating data curation costs for a 2030 worldwide battery retirement scenario. This paper highlights exploiting limited data for exploring extended data space using generative methods, given data can be time-consuming, expensive, and polluting to retrieve for many estimation and predictive tasks.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"38 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative learning assisted state-of-health estimation for sustainable battery recycling with random retirement conditions\",\"authors\":\"Shengyu Tao, Ruifei Ma, Zixi Zhao, Guangyuan Ma, Lin Su, Heng Chang, Yuou Chen, Haizhou Liu, Zheng Liang, Tingwei Cao, Haocheng Ji, Zhiyuan Han, Minyan Lu, Huixiong Yang, Zongguo Wen, Jianhua Yao, Rong Yu, Guodan Wei, Yang Li, Xuan Zhang, Tingyang Xu, Guangmin Zhou\",\"doi\":\"10.1038/s41467-024-54454-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rapid and accurate state of health (SOH) estimation of retired batteries is a crucial pretreatment for reuse and recycling. However, data-driven methods require exhaustive data curation under random SOH and state of charge (SOC) retirement conditions. Here, we show that the generative learning-assisted SOH estimation is promising in alleviating data scarcity and heterogeneity challenges, validated through a pulse injection dataset of 2700 retired lithium-ion battery samples, covering 3 cathode material types, 3 physical formats, 4 capacity designs, and 4 historical usages with 10 SOC levels. Using generated data, a regressor realizes accurate SOH estimations, with mean absolute percentage errors below 6% under unseen SOC. We predict that assuming uniform deployment of the proposed technique, this would save 4.9 billion USD in electricity costs and 35.8 billion kg CO<sub>2</sub> emissions by mitigating data curation costs for a 2030 worldwide battery retirement scenario. This paper highlights exploiting limited data for exploring extended data space using generative methods, given data can be time-consuming, expensive, and polluting to retrieve for many estimation and predictive tasks.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54454-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54454-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对报废电池进行快速、准确的健康状况(SOH)估算,是对电池进行再利用和回收的重要预处理。然而,数据驱动方法需要在随机 SOH 和电荷状态(SOC)退役条件下进行详尽的数据整理。在这里,我们通过一个包含 2700 个退役锂离子电池样本的脉冲注入数据集,验证了生成式学习辅助 SOH 估算在缓解数据稀缺性和异质性挑战方面的前景,该数据集涵盖 3 种正极材料类型、3 种物理格式、4 种容量设计和 4 种历史使用情况以及 10 个 SOC 水平。利用生成的数据,一个回归器实现了精确的 SOH 估算,在未见 SOC 的情况下,平均绝对百分比误差低于 6%。我们预测,假设统一部署所提出的技术,在 2030 年全球电池退役的情况下,通过降低数据整理成本,将节省 49 亿美元的电费和 358 亿千克的二氧化碳排放量。本文重点介绍了利用有限数据探索扩展数据空间的生成方法,因为对于许多估算和预测任务来说,检索数据可能会耗费大量时间、成本和污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generative learning assisted state-of-health estimation for sustainable battery recycling with random retirement conditions

Generative learning assisted state-of-health estimation for sustainable battery recycling with random retirement conditions

Rapid and accurate state of health (SOH) estimation of retired batteries is a crucial pretreatment for reuse and recycling. However, data-driven methods require exhaustive data curation under random SOH and state of charge (SOC) retirement conditions. Here, we show that the generative learning-assisted SOH estimation is promising in alleviating data scarcity and heterogeneity challenges, validated through a pulse injection dataset of 2700 retired lithium-ion battery samples, covering 3 cathode material types, 3 physical formats, 4 capacity designs, and 4 historical usages with 10 SOC levels. Using generated data, a regressor realizes accurate SOH estimations, with mean absolute percentage errors below 6% under unseen SOC. We predict that assuming uniform deployment of the proposed technique, this would save 4.9 billion USD in electricity costs and 35.8 billion kg CO2 emissions by mitigating data curation costs for a 2030 worldwide battery retirement scenario. This paper highlights exploiting limited data for exploring extended data space using generative methods, given data can be time-consuming, expensive, and polluting to retrieve for many estimation and predictive tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信