Przemysław Mitura, Wiesław Paja, Bartosz Klebowski, Paweł Płaza, Krzyszof Bar, Grzegorz Młynarczyk, Joanna Depciuch
{"title":"利用傅立叶变换红外光谱、化学计量学和机器学习方法分析尿液,确定尿液中前列腺癌的光谱标记。","authors":"Przemysław Mitura, Wiesław Paja, Bartosz Klebowski, Paweł Płaza, Krzyszof Bar, Grzegorz Młynarczyk, Joanna Depciuch","doi":"10.1002/jbio.202400278","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Prostate-specific antigen (PSA) is the most commonly used marker of prostate cancer. However, nearly 25% of men with elevated PSA levels do not have cancer and nearly 20% of patients with prostate cancer have normal serum PSA levels. Therefore, in this study, Fourier transform infrared (FTIR) spectroscopy was investigated as a new tool for detection of prostate cancer from urine. Obtained results showed higher levels of glucose, urea and creatinine in urine collected from patients with prostate cancer than that in control. Principal component analysis (PCA) was not noticed possibility of differentiation urine collected from healthy and nonhealthy patients. However, machine learning algorithms showed 0.90 accuracy and precision of FTIR in detection of prostate cancer from urine. We showed that wavenumbers at 1614 cm<sup>−1</sup> and 2972 cm<sup>−1</sup> were candidates for prostate cancer spectroscopy markers. Importantly, these FTIR markers correlated with Gleason score, PSA and mpMRI PI-RADS category.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urine Analysed by FTIR, Chemometrics and Machine Learning Methods in Determination Spectroscopy Marker of Prostate Cancer in Urine\",\"authors\":\"Przemysław Mitura, Wiesław Paja, Bartosz Klebowski, Paweł Płaza, Krzyszof Bar, Grzegorz Młynarczyk, Joanna Depciuch\",\"doi\":\"10.1002/jbio.202400278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Prostate-specific antigen (PSA) is the most commonly used marker of prostate cancer. However, nearly 25% of men with elevated PSA levels do not have cancer and nearly 20% of patients with prostate cancer have normal serum PSA levels. Therefore, in this study, Fourier transform infrared (FTIR) spectroscopy was investigated as a new tool for detection of prostate cancer from urine. Obtained results showed higher levels of glucose, urea and creatinine in urine collected from patients with prostate cancer than that in control. Principal component analysis (PCA) was not noticed possibility of differentiation urine collected from healthy and nonhealthy patients. However, machine learning algorithms showed 0.90 accuracy and precision of FTIR in detection of prostate cancer from urine. We showed that wavenumbers at 1614 cm<sup>−1</sup> and 2972 cm<sup>−1</sup> were candidates for prostate cancer spectroscopy markers. Importantly, these FTIR markers correlated with Gleason score, PSA and mpMRI PI-RADS category.</p>\\n </div>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400278\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400278","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Urine Analysed by FTIR, Chemometrics and Machine Learning Methods in Determination Spectroscopy Marker of Prostate Cancer in Urine
Prostate-specific antigen (PSA) is the most commonly used marker of prostate cancer. However, nearly 25% of men with elevated PSA levels do not have cancer and nearly 20% of patients with prostate cancer have normal serum PSA levels. Therefore, in this study, Fourier transform infrared (FTIR) spectroscopy was investigated as a new tool for detection of prostate cancer from urine. Obtained results showed higher levels of glucose, urea and creatinine in urine collected from patients with prostate cancer than that in control. Principal component analysis (PCA) was not noticed possibility of differentiation urine collected from healthy and nonhealthy patients. However, machine learning algorithms showed 0.90 accuracy and precision of FTIR in detection of prostate cancer from urine. We showed that wavenumbers at 1614 cm−1 and 2972 cm−1 were candidates for prostate cancer spectroscopy markers. Importantly, these FTIR markers correlated with Gleason score, PSA and mpMRI PI-RADS category.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.