Hongjuan Yao , Liaoxin Luo , Rui Li , Yelin Zhao , Li Zhang , Milica Pešić , Lin Cai , Liang Li
{"title":"SMAD4突变/缺陷在胰腺导管腺癌的预后和耐药性中的作用的新见解。","authors":"Hongjuan Yao , Liaoxin Luo , Rui Li , Yelin Zhao , Li Zhang , Milica Pešić , Lin Cai , Liang Li","doi":"10.1016/j.bbcan.2024.189220","DOIUrl":null,"url":null,"abstract":"<div><div>Pancreatic ductal adenocarcinoma (PDAC) patients have an unfavorable prognosis and disappointing treatment outcomes because of late diagnosis, high chemotherapy resistance, ineffective adjuvant chemotherapy, unavailable molecular targeted therapy, and profound immunosuppressive effects in the tumor microenvironment (TME). There are a variety of critical driver proteins, such as KRAS, TP53, PTEN and SMAD4, putatively involved in PDAC etiology. Current knowledge of their molecular mechanisms is still limited. <em>SMAD4</em> gene alterations in ∼55 % of patients emphasize its key role in PDAC progression, metastasis, resistance and immunity. Despite extensive studies on the TGF-β/SMAD pathway, the impact of SMAD4 mutation/deficiency on PDAC prognosis and treatment, especially its mechanism in drug resistance, has not yet been elucidated. This review summarizes the latest advances in the effect of SMAD4 deficiency on the prognosis and therapeutic resistance of PDAC patients. It might be a predictive and prognostic biomarker or therapeutic target to achieve the desired clinical benefits. Moreover, we discuss potential strategies to implement targeted therapies in terms of SMAD4 genetic status.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1879 6","pages":"Article 189220"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New insight into the role of SMAD4 mutation/deficiency in the prognosis and therapeutic resistance of pancreatic ductal adenocarcinomas\",\"authors\":\"Hongjuan Yao , Liaoxin Luo , Rui Li , Yelin Zhao , Li Zhang , Milica Pešić , Lin Cai , Liang Li\",\"doi\":\"10.1016/j.bbcan.2024.189220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pancreatic ductal adenocarcinoma (PDAC) patients have an unfavorable prognosis and disappointing treatment outcomes because of late diagnosis, high chemotherapy resistance, ineffective adjuvant chemotherapy, unavailable molecular targeted therapy, and profound immunosuppressive effects in the tumor microenvironment (TME). There are a variety of critical driver proteins, such as KRAS, TP53, PTEN and SMAD4, putatively involved in PDAC etiology. Current knowledge of their molecular mechanisms is still limited. <em>SMAD4</em> gene alterations in ∼55 % of patients emphasize its key role in PDAC progression, metastasis, resistance and immunity. Despite extensive studies on the TGF-β/SMAD pathway, the impact of SMAD4 mutation/deficiency on PDAC prognosis and treatment, especially its mechanism in drug resistance, has not yet been elucidated. This review summarizes the latest advances in the effect of SMAD4 deficiency on the prognosis and therapeutic resistance of PDAC patients. It might be a predictive and prognostic biomarker or therapeutic target to achieve the desired clinical benefits. Moreover, we discuss potential strategies to implement targeted therapies in terms of SMAD4 genetic status.</div></div>\",\"PeriodicalId\":8782,\"journal\":{\"name\":\"Biochimica et biophysica acta. Reviews on cancer\",\"volume\":\"1879 6\",\"pages\":\"Article 189220\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Reviews on cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304419X24001513\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304419X24001513","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
New insight into the role of SMAD4 mutation/deficiency in the prognosis and therapeutic resistance of pancreatic ductal adenocarcinomas
Pancreatic ductal adenocarcinoma (PDAC) patients have an unfavorable prognosis and disappointing treatment outcomes because of late diagnosis, high chemotherapy resistance, ineffective adjuvant chemotherapy, unavailable molecular targeted therapy, and profound immunosuppressive effects in the tumor microenvironment (TME). There are a variety of critical driver proteins, such as KRAS, TP53, PTEN and SMAD4, putatively involved in PDAC etiology. Current knowledge of their molecular mechanisms is still limited. SMAD4 gene alterations in ∼55 % of patients emphasize its key role in PDAC progression, metastasis, resistance and immunity. Despite extensive studies on the TGF-β/SMAD pathway, the impact of SMAD4 mutation/deficiency on PDAC prognosis and treatment, especially its mechanism in drug resistance, has not yet been elucidated. This review summarizes the latest advances in the effect of SMAD4 deficiency on the prognosis and therapeutic resistance of PDAC patients. It might be a predictive and prognostic biomarker or therapeutic target to achieve the desired clinical benefits. Moreover, we discuss potential strategies to implement targeted therapies in terms of SMAD4 genetic status.
期刊介绍:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer encompasses the entirety of cancer biology and biochemistry, emphasizing oncogenes and tumor suppressor genes, growth-related cell cycle control signaling, carcinogenesis mechanisms, cell transformation, immunologic control mechanisms, genetics of human (mammalian) cancer, control of cell proliferation, genetic and molecular control of organismic development, rational anti-tumor drug design. It publishes mini-reviews and full reviews.