对常见心脏疾病进行综合蛋白质组分析,有助于深入了解机理并加强预测。

IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Art Schuermans, Ashley B Pournamdari, Jiwoo Lee, Rohan Bhukar, Shriienidhie Ganesh, Nicholas Darosa, Aeron M Small, Zhi Yu, Whitney Hornsby, Satoshi Koyama, Charles Kooperberg, Alexander P Reiner, James L Januzzi, Michael C Honigberg, Pradeep Natarajan
{"title":"对常见心脏疾病进行综合蛋白质组分析,有助于深入了解机理并加强预测。","authors":"Art Schuermans, Ashley B Pournamdari, Jiwoo Lee, Rohan Bhukar, Shriienidhie Ganesh, Nicholas Darosa, Aeron M Small, Zhi Yu, Whitney Hornsby, Satoshi Koyama, Charles Kooperberg, Alexander P Reiner, James L Januzzi, Michael C Honigberg, Pradeep Natarajan","doi":"10.1038/s44161-024-00567-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac diseases represent common highly morbid conditions for which molecular mechanisms remain incompletely understood. Here we report the analysis of 1,459 protein measurements in 44,313 UK Biobank participants to characterize the circulating proteome associated with incident coronary artery disease, heart failure, atrial fibrillation and aortic stenosis. Multivariable-adjusted Cox regression identified 820 protein-disease associations-including 441 proteins-at Bonferroni-adjusted P < 8.6 × 10<sup>-6</sup>. Cis-Mendelian randomization suggested causal roles aligning with epidemiological findings for 4% of proteins identified in primary analyses, prioritizing therapeutic targets across cardiac diseases (for example, spondin-1 for atrial fibrillation and the Kunitz-type protease inhibitor 1 for coronary artery disease). Interaction analyses identified seven protein-disease associations that differed Bonferroni-significantly by sex. Models incorporating proteomic data (versus clinical risk factors alone) improved prediction for coronary artery disease, heart failure and atrial fibrillation. These results lay a foundation for future investigations to uncover disease mechanisms and assess the utility of protein-based prevention strategies for cardiac diseases.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative proteomic analyses across common cardiac diseases yield mechanistic insights and enhanced prediction.\",\"authors\":\"Art Schuermans, Ashley B Pournamdari, Jiwoo Lee, Rohan Bhukar, Shriienidhie Ganesh, Nicholas Darosa, Aeron M Small, Zhi Yu, Whitney Hornsby, Satoshi Koyama, Charles Kooperberg, Alexander P Reiner, James L Januzzi, Michael C Honigberg, Pradeep Natarajan\",\"doi\":\"10.1038/s44161-024-00567-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiac diseases represent common highly morbid conditions for which molecular mechanisms remain incompletely understood. Here we report the analysis of 1,459 protein measurements in 44,313 UK Biobank participants to characterize the circulating proteome associated with incident coronary artery disease, heart failure, atrial fibrillation and aortic stenosis. Multivariable-adjusted Cox regression identified 820 protein-disease associations-including 441 proteins-at Bonferroni-adjusted P < 8.6 × 10<sup>-6</sup>. Cis-Mendelian randomization suggested causal roles aligning with epidemiological findings for 4% of proteins identified in primary analyses, prioritizing therapeutic targets across cardiac diseases (for example, spondin-1 for atrial fibrillation and the Kunitz-type protease inhibitor 1 for coronary artery disease). Interaction analyses identified seven protein-disease associations that differed Bonferroni-significantly by sex. Models incorporating proteomic data (versus clinical risk factors alone) improved prediction for coronary artery disease, heart failure and atrial fibrillation. These results lay a foundation for future investigations to uncover disease mechanisms and assess the utility of protein-based prevention strategies for cardiac diseases.</p>\",\"PeriodicalId\":74245,\"journal\":{\"name\":\"Nature cardiovascular research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cardiovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44161-024-00567-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44161-024-00567-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

心脏疾病是一种常见的高发病率疾病,其分子机制至今仍不完全清楚。在此,我们报告了对 44,313 名英国生物库参与者的 1,459 项蛋白质测量结果的分析,以描述与冠心病、心力衰竭、心房颤动和主动脉瓣狭窄相关的循环蛋白质组。经多变量调整的 Cox 回归确定了 820 种蛋白质与疾病的相关性,其中包括 441 种蛋白质,Bonferroni 调整后的 P 值为 -6。顺式-孟德尔随机分析表明,在主要分析中确定的蛋白质中,有4%的因果作用与流行病学研究结果一致,优先选择了各种心脏疾病的治疗目标(例如,治疗心房颤动的spondin-1和治疗冠心病的Kunitz型蛋白酶抑制剂1)。交互分析发现了七种蛋白质与疾病的关联,这些关联因性别不同而有 Bonferroni 显著性差异。纳入蛋白质组数据的模型(与仅纳入临床风险因素的模型相比)提高了对冠心病、心力衰竭和心房颤动的预测能力。这些结果为今后的研究奠定了基础,以揭示疾病机制并评估基于蛋白质的心脏病预防策略的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrative proteomic analyses across common cardiac diseases yield mechanistic insights and enhanced prediction.

Cardiac diseases represent common highly morbid conditions for which molecular mechanisms remain incompletely understood. Here we report the analysis of 1,459 protein measurements in 44,313 UK Biobank participants to characterize the circulating proteome associated with incident coronary artery disease, heart failure, atrial fibrillation and aortic stenosis. Multivariable-adjusted Cox regression identified 820 protein-disease associations-including 441 proteins-at Bonferroni-adjusted P < 8.6 × 10-6. Cis-Mendelian randomization suggested causal roles aligning with epidemiological findings for 4% of proteins identified in primary analyses, prioritizing therapeutic targets across cardiac diseases (for example, spondin-1 for atrial fibrillation and the Kunitz-type protease inhibitor 1 for coronary artery disease). Interaction analyses identified seven protein-disease associations that differed Bonferroni-significantly by sex. Models incorporating proteomic data (versus clinical risk factors alone) improved prediction for coronary artery disease, heart failure and atrial fibrillation. These results lay a foundation for future investigations to uncover disease mechanisms and assess the utility of protein-based prevention strategies for cardiac diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信