{"title":"Znf706调控斑马鱼生殖质的组装和原始生殖细胞的发育。","authors":"Weiying Zhang, Yaqi Li, Han Li, Xin Liu, Tao Zheng, Guangyuan Li, Boqi Liu, Tong Lv, Zihang Wei, Cencan Xing, Shunji Jia, Anming Meng, Xiaotong Wu","doi":"10.1016/j.jgg.2024.11.007","DOIUrl":null,"url":null,"abstract":"<p><p>The cell fate of primordial germ cells (PGCs) in zebrafish is pre-determined by maternally deposited germ plasm, which is packaged into ribonucleoprotein complex in oocytes and inherited into PGCs-fated cells in embryos. However, the maternal factors regulating the assembly of germ plasm and PGC development remain poorly understood. In this study, we report that the maternal transcription factor Znf706 regulates the assembly of germ plasm factors into a granule-like structure localized perinuclearly in PGCs during migration. Maternal and zygotic mutants of znf706 (MZznf706) exhibit deficient germ plasm scattering at the early embryonic stage, decreased PGC numbers with some mislocation during PGC migration, and a lower female ratio in adulthood. Notably, the implementation of Znf706 CUT&Tag and RNA-seq on immature oocytes uncovers that Znf706 in stage I oocytes may promote transcription of several mitochondrial genes in addition to other functions. Hence, we propose that Znf706 is implicated in germ plasm assembly and PGC development in zebrafish.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Znf706 regulates germ plasm assembly and primordial germ cell development in zebrafish.\",\"authors\":\"Weiying Zhang, Yaqi Li, Han Li, Xin Liu, Tao Zheng, Guangyuan Li, Boqi Liu, Tong Lv, Zihang Wei, Cencan Xing, Shunji Jia, Anming Meng, Xiaotong Wu\",\"doi\":\"10.1016/j.jgg.2024.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cell fate of primordial germ cells (PGCs) in zebrafish is pre-determined by maternally deposited germ plasm, which is packaged into ribonucleoprotein complex in oocytes and inherited into PGCs-fated cells in embryos. However, the maternal factors regulating the assembly of germ plasm and PGC development remain poorly understood. In this study, we report that the maternal transcription factor Znf706 regulates the assembly of germ plasm factors into a granule-like structure localized perinuclearly in PGCs during migration. Maternal and zygotic mutants of znf706 (MZznf706) exhibit deficient germ plasm scattering at the early embryonic stage, decreased PGC numbers with some mislocation during PGC migration, and a lower female ratio in adulthood. Notably, the implementation of Znf706 CUT&Tag and RNA-seq on immature oocytes uncovers that Znf706 in stage I oocytes may promote transcription of several mitochondrial genes in addition to other functions. Hence, we propose that Znf706 is implicated in germ plasm assembly and PGC development in zebrafish.</p>\",\"PeriodicalId\":54825,\"journal\":{\"name\":\"Journal of Genetics and Genomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jgg.2024.11.007\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2024.11.007","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
斑马鱼原始生殖细胞(PGCs)的细胞命运是由母体沉积的生殖质预先决定的,生殖质在卵母细胞中被包装成核糖核蛋白复合物,并在胚胎中遗传到与 PGCs 有缘的细胞中。然而,调控种质组装和 PGC 发育的母体因素仍然鲜为人知。在这项研究中,我们报告了母体转录因子 Znf706 在 PGCs 迁移过程中调节种质因子组装成颗粒状结构,该结构定位在核周围。znf706的母本和子代突变体(MZznf706)在胚胎早期表现出生殖质散射缺陷,PGC数量减少,在PGC迁移过程中出现一些错位,成年后雌性比例降低。值得注意的是,对未成熟卵母细胞进行 Znf706 CUT&Tag 和 RNA-seq 研究发现,Znf706 在 I 期卵母细胞中除了其他功能外,还可能促进多个线粒体基因的转录。因此,我们认为 Znf706 与斑马鱼的种质组装和 PGC 发育有关。
Znf706 regulates germ plasm assembly and primordial germ cell development in zebrafish.
The cell fate of primordial germ cells (PGCs) in zebrafish is pre-determined by maternally deposited germ plasm, which is packaged into ribonucleoprotein complex in oocytes and inherited into PGCs-fated cells in embryos. However, the maternal factors regulating the assembly of germ plasm and PGC development remain poorly understood. In this study, we report that the maternal transcription factor Znf706 regulates the assembly of germ plasm factors into a granule-like structure localized perinuclearly in PGCs during migration. Maternal and zygotic mutants of znf706 (MZznf706) exhibit deficient germ plasm scattering at the early embryonic stage, decreased PGC numbers with some mislocation during PGC migration, and a lower female ratio in adulthood. Notably, the implementation of Znf706 CUT&Tag and RNA-seq on immature oocytes uncovers that Znf706 in stage I oocytes may promote transcription of several mitochondrial genes in addition to other functions. Hence, we propose that Znf706 is implicated in germ plasm assembly and PGC development in zebrafish.
期刊介绍:
The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.