{"title":"基于快速虚拟部署和离散元方法的脑动脉瘤实时手术规划","authors":"Xinzhuo Li, Jiewen Geng, Yong Feng, Shengzhang Wang, Hongqi Zhang","doi":"10.1002/cnm.3886","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces an innovative real-time surgical planning platform optimized for the treatment of arterial aneurysms using intrasaccular flow disruption (IFD) devices. This platform incorporates a cutting-edge fast virtual deployment (FVD) algorithm alongside a discrete element method (DEM) for computational fluid dynamics (CFD) analyses. It facilitates the efficient virtual deployment of IFD devices, minimizing computational overhead while allowing for comprehensive postoperative hemodynamic efficacy assessment. The FVD algorithm employs an adaptive wall adherence and curvature control system, validated through both idealized and patient-specific model simulations. Post-treatment hemodynamic shifts are quantified by discretizing device wire filaments into discrete particles, which are then integrated with blood flow simulations for enhanced realism. The FVD algorithm efficiently executes virtual deployment of IFD devices within seconds, producing DEM-CFD computational models that align closely with bench testing, traditional Finite Element Method (FEM) analyses, and angiographic data. DEM-CFD outcomes link occlusion effectiveness to post-implantation hemodynamic characteristics, influenced by the aneurysm's unique anatomical features and clinical intervention strategies. The proposed platform demonstrates substantial improvement in balancing computational efficiency with analytical precision. It provides a viable and innovative framework for real-time surgical planning, presenting significant implications for clinical application in arterial aneurysm management.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3886"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Surgical Planning for Cerebral Aneurysms Treated With Intrasaccular Flow Disruption Devices Based on Fast Virtual Deployment and Discrete Element Method.\",\"authors\":\"Xinzhuo Li, Jiewen Geng, Yong Feng, Shengzhang Wang, Hongqi Zhang\",\"doi\":\"10.1002/cnm.3886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces an innovative real-time surgical planning platform optimized for the treatment of arterial aneurysms using intrasaccular flow disruption (IFD) devices. This platform incorporates a cutting-edge fast virtual deployment (FVD) algorithm alongside a discrete element method (DEM) for computational fluid dynamics (CFD) analyses. It facilitates the efficient virtual deployment of IFD devices, minimizing computational overhead while allowing for comprehensive postoperative hemodynamic efficacy assessment. The FVD algorithm employs an adaptive wall adherence and curvature control system, validated through both idealized and patient-specific model simulations. Post-treatment hemodynamic shifts are quantified by discretizing device wire filaments into discrete particles, which are then integrated with blood flow simulations for enhanced realism. The FVD algorithm efficiently executes virtual deployment of IFD devices within seconds, producing DEM-CFD computational models that align closely with bench testing, traditional Finite Element Method (FEM) analyses, and angiographic data. DEM-CFD outcomes link occlusion effectiveness to post-implantation hemodynamic characteristics, influenced by the aneurysm's unique anatomical features and clinical intervention strategies. The proposed platform demonstrates substantial improvement in balancing computational efficiency with analytical precision. It provides a viable and innovative framework for real-time surgical planning, presenting significant implications for clinical application in arterial aneurysm management.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\" \",\"pages\":\"e3886\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cnm.3886\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cnm.3886","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Real-Time Surgical Planning for Cerebral Aneurysms Treated With Intrasaccular Flow Disruption Devices Based on Fast Virtual Deployment and Discrete Element Method.
This study introduces an innovative real-time surgical planning platform optimized for the treatment of arterial aneurysms using intrasaccular flow disruption (IFD) devices. This platform incorporates a cutting-edge fast virtual deployment (FVD) algorithm alongside a discrete element method (DEM) for computational fluid dynamics (CFD) analyses. It facilitates the efficient virtual deployment of IFD devices, minimizing computational overhead while allowing for comprehensive postoperative hemodynamic efficacy assessment. The FVD algorithm employs an adaptive wall adherence and curvature control system, validated through both idealized and patient-specific model simulations. Post-treatment hemodynamic shifts are quantified by discretizing device wire filaments into discrete particles, which are then integrated with blood flow simulations for enhanced realism. The FVD algorithm efficiently executes virtual deployment of IFD devices within seconds, producing DEM-CFD computational models that align closely with bench testing, traditional Finite Element Method (FEM) analyses, and angiographic data. DEM-CFD outcomes link occlusion effectiveness to post-implantation hemodynamic characteristics, influenced by the aneurysm's unique anatomical features and clinical intervention strategies. The proposed platform demonstrates substantial improvement in balancing computational efficiency with analytical precision. It provides a viable and innovative framework for real-time surgical planning, presenting significant implications for clinical application in arterial aneurysm management.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.