{"title":"为中风幸存者设计三维打印腕手抓握矫形器,并对其进行建模和初步评估。","authors":"Elissa D Ledoux, Eric J Barth","doi":"10.1017/wtc.2024.18","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke causes neurological and physical impairment in millions of people around the world every year. To better comprehend the upper-limb needs and challenges stroke survivors face and the issues associated with existing technology and formulate ideas for a technological solution, the authors conversed with 153 members of the ecosystem (60 neuro patients, 30 caregivers, and 63 medical providers). Patients fell into two populations depending on their upper-limb impairment: spastic (stiff, clenched hands) and flaccid (limp hands). For this work, the authors chose to focus on the second category and developed a set of design constraints based on the information collected through customer discovery. With these in mind, they designed and prototyped a 3D-printed powered wrist-hand grasping orthosis (exoskeleton) to aid in recovery. The orthosis is easily custom-sized based on two parameters and derived anatomical relationships. The researchers tested the prototype on a survivor of stroke and modeled the kinematic behavior of the orthosis with and without load. The prototype neared or exceeded the target design constraints and was able to grasp objects consistently and stably, as well as exercise the patients' hands. In particular, donning time was only 42 s, as compared to the next fastest time of 3 min reported in literature. This device has the potential for effective neurorehabilitation in a home setting, and it lays the foundation for clinical trials and further device development.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":"5 ","pages":"e12"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579884/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design, modeling, and preliminary evaluation of a 3D-printed wrist-hand grasping orthosis for stroke survivors.\",\"authors\":\"Elissa D Ledoux, Eric J Barth\",\"doi\":\"10.1017/wtc.2024.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stroke causes neurological and physical impairment in millions of people around the world every year. To better comprehend the upper-limb needs and challenges stroke survivors face and the issues associated with existing technology and formulate ideas for a technological solution, the authors conversed with 153 members of the ecosystem (60 neuro patients, 30 caregivers, and 63 medical providers). Patients fell into two populations depending on their upper-limb impairment: spastic (stiff, clenched hands) and flaccid (limp hands). For this work, the authors chose to focus on the second category and developed a set of design constraints based on the information collected through customer discovery. With these in mind, they designed and prototyped a 3D-printed powered wrist-hand grasping orthosis (exoskeleton) to aid in recovery. The orthosis is easily custom-sized based on two parameters and derived anatomical relationships. The researchers tested the prototype on a survivor of stroke and modeled the kinematic behavior of the orthosis with and without load. The prototype neared or exceeded the target design constraints and was able to grasp objects consistently and stably, as well as exercise the patients' hands. In particular, donning time was only 42 s, as compared to the next fastest time of 3 min reported in literature. This device has the potential for effective neurorehabilitation in a home setting, and it lays the foundation for clinical trials and further device development.</p>\",\"PeriodicalId\":75318,\"journal\":{\"name\":\"Wearable technologies\",\"volume\":\"5 \",\"pages\":\"e12\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579884/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wearable technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/wtc.2024.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wearable technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2024.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Design, modeling, and preliminary evaluation of a 3D-printed wrist-hand grasping orthosis for stroke survivors.
Stroke causes neurological and physical impairment in millions of people around the world every year. To better comprehend the upper-limb needs and challenges stroke survivors face and the issues associated with existing technology and formulate ideas for a technological solution, the authors conversed with 153 members of the ecosystem (60 neuro patients, 30 caregivers, and 63 medical providers). Patients fell into two populations depending on their upper-limb impairment: spastic (stiff, clenched hands) and flaccid (limp hands). For this work, the authors chose to focus on the second category and developed a set of design constraints based on the information collected through customer discovery. With these in mind, they designed and prototyped a 3D-printed powered wrist-hand grasping orthosis (exoskeleton) to aid in recovery. The orthosis is easily custom-sized based on two parameters and derived anatomical relationships. The researchers tested the prototype on a survivor of stroke and modeled the kinematic behavior of the orthosis with and without load. The prototype neared or exceeded the target design constraints and was able to grasp objects consistently and stably, as well as exercise the patients' hands. In particular, donning time was only 42 s, as compared to the next fastest time of 3 min reported in literature. This device has the potential for effective neurorehabilitation in a home setting, and it lays the foundation for clinical trials and further device development.