Román Zapién-Campos, Florence Bansept, Arne Traulsen
{"title":"通过随机模型,可以更好地从时间序列数据中推断微生物组的相互作用。","authors":"Román Zapién-Campos, Florence Bansept, Arne Traulsen","doi":"10.1371/journal.pbio.3002913","DOIUrl":null,"url":null,"abstract":"<p><p>How can we figure out how the different microbes interact within microbiomes? To combine theoretical models and experimental data, we often fit a deterministic model for the mean dynamics of a system to averaged data. However, in the averaging procedure a lot of information from the data is lost-and a deterministic model may be a poor representation of a stochastic reality. Here, we develop an inference method for microbiomes based on the idea that both the experiment and the model are stochastic. Starting from a stochastic model, we derive dynamical equations not only for the average, but also for higher statistical moments of the microbial abundances. We use these equations to infer distributions of the interaction parameters that best describe the biological experimental data-improving identifiability and precision. The inferred distributions allow us to make predictions but also to distinguish between fairly certain parameters and those for which the available experimental data does not give sufficient information. Compared to related approaches, we derive expressions that also work for the relative abundance of microbes, enabling us to use conventional metagenome data, and account for cases where not a single host, but only replicate hosts, can be tracked over time.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002913"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620570/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stochastic models allow improved inference of microbiome interactions from time series data.\",\"authors\":\"Román Zapién-Campos, Florence Bansept, Arne Traulsen\",\"doi\":\"10.1371/journal.pbio.3002913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>How can we figure out how the different microbes interact within microbiomes? To combine theoretical models and experimental data, we often fit a deterministic model for the mean dynamics of a system to averaged data. However, in the averaging procedure a lot of information from the data is lost-and a deterministic model may be a poor representation of a stochastic reality. Here, we develop an inference method for microbiomes based on the idea that both the experiment and the model are stochastic. Starting from a stochastic model, we derive dynamical equations not only for the average, but also for higher statistical moments of the microbial abundances. We use these equations to infer distributions of the interaction parameters that best describe the biological experimental data-improving identifiability and precision. The inferred distributions allow us to make predictions but also to distinguish between fairly certain parameters and those for which the available experimental data does not give sufficient information. Compared to related approaches, we derive expressions that also work for the relative abundance of microbes, enabling us to use conventional metagenome data, and account for cases where not a single host, but only replicate hosts, can be tracked over time.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"22 11\",\"pages\":\"e3002913\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620570/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002913\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002913","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Stochastic models allow improved inference of microbiome interactions from time series data.
How can we figure out how the different microbes interact within microbiomes? To combine theoretical models and experimental data, we often fit a deterministic model for the mean dynamics of a system to averaged data. However, in the averaging procedure a lot of information from the data is lost-and a deterministic model may be a poor representation of a stochastic reality. Here, we develop an inference method for microbiomes based on the idea that both the experiment and the model are stochastic. Starting from a stochastic model, we derive dynamical equations not only for the average, but also for higher statistical moments of the microbial abundances. We use these equations to infer distributions of the interaction parameters that best describe the biological experimental data-improving identifiability and precision. The inferred distributions allow us to make predictions but also to distinguish between fairly certain parameters and those for which the available experimental data does not give sufficient information. Compared to related approaches, we derive expressions that also work for the relative abundance of microbes, enabling us to use conventional metagenome data, and account for cases where not a single host, but only replicate hosts, can be tracked over time.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.