Anantu Sunil, Olivia Pedroncini, Andreas T Schaefer, Tobias Ackels
{"title":"哺乳动物如何将动态气味信息转化为景观导航神经图?","authors":"Anantu Sunil, Olivia Pedroncini, Andreas T Schaefer, Tobias Ackels","doi":"10.1371/journal.pbio.3002908","DOIUrl":null,"url":null,"abstract":"<p><p>Odors are transported by seemingly chaotic plumes, whose spatiotemporal structure contains rich information about space, with olfaction serving as a gateway for obtaining and processing this spatial information. Beyond tracking odors, olfaction provides localization and chemical communication cues for detecting conspecifics and predators, and linking external environments to internal cognitive maps. In this Essay, we discuss recent physiological, behavioral, and methodological advancements in mammalian olfactory research to present our current understanding of how olfaction can be used to navigate the environment. We also examine potential neural mechanisms that might convert dynamic olfactory inputs into environmental maps along this axis. Finally, we consider technological applications of odor dynamics for developing bio-inspired sensor technologies, robotics, and computational models. By shedding light on the principles underlying the processing of odor dynamics, olfactory research will pave the way for innovative solutions that bridge the gap between biology and technology, enriching our understanding of the natural world.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002908"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How do mammals convert dynamic odor information into neural maps for landscape navigation?\",\"authors\":\"Anantu Sunil, Olivia Pedroncini, Andreas T Schaefer, Tobias Ackels\",\"doi\":\"10.1371/journal.pbio.3002908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Odors are transported by seemingly chaotic plumes, whose spatiotemporal structure contains rich information about space, with olfaction serving as a gateway for obtaining and processing this spatial information. Beyond tracking odors, olfaction provides localization and chemical communication cues for detecting conspecifics and predators, and linking external environments to internal cognitive maps. In this Essay, we discuss recent physiological, behavioral, and methodological advancements in mammalian olfactory research to present our current understanding of how olfaction can be used to navigate the environment. We also examine potential neural mechanisms that might convert dynamic olfactory inputs into environmental maps along this axis. Finally, we consider technological applications of odor dynamics for developing bio-inspired sensor technologies, robotics, and computational models. By shedding light on the principles underlying the processing of odor dynamics, olfactory research will pave the way for innovative solutions that bridge the gap between biology and technology, enriching our understanding of the natural world.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"22 11\",\"pages\":\"e3002908\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3002908\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002908","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
How do mammals convert dynamic odor information into neural maps for landscape navigation?
Odors are transported by seemingly chaotic plumes, whose spatiotemporal structure contains rich information about space, with olfaction serving as a gateway for obtaining and processing this spatial information. Beyond tracking odors, olfaction provides localization and chemical communication cues for detecting conspecifics and predators, and linking external environments to internal cognitive maps. In this Essay, we discuss recent physiological, behavioral, and methodological advancements in mammalian olfactory research to present our current understanding of how olfaction can be used to navigate the environment. We also examine potential neural mechanisms that might convert dynamic olfactory inputs into environmental maps along this axis. Finally, we consider technological applications of odor dynamics for developing bio-inspired sensor technologies, robotics, and computational models. By shedding light on the principles underlying the processing of odor dynamics, olfactory research will pave the way for innovative solutions that bridge the gap between biology and technology, enriching our understanding of the natural world.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.