{"title":"阿尔茨海默病的动物模型:当前策略和新方向。","authors":"Qing Wang, Bai-Ting Zhu, Peng Lei","doi":"10.24272/j.issn.2095-8137.2024.274","DOIUrl":null,"url":null,"abstract":"<p><p>Animal models constructed using pathogenic factors have significantly advanced drug development for Alzheimer's disease (AD). These predominantly transgenic models, mainly in mice, replicate pathological phenotypes through gene mutations associated with familial AD cases, thus serving as vital tools for assessing drug efficacy and for performing mechanistic studies. However, the species-specific differences and complex, heterogeneous nature of AD etiology pose considerable challenges for the translatability of these animal models, limiting their utility in drug development. This review offers a comprehensive analysis of widely employed rodent (mice and rats) and non-rodent models ( <i>Danio rerio</i> (zebrafish), <i>Drosophila melanogaster</i>, and <i>Caenorhabditis</i> <i>elegans</i>), detailing their phenotypic features and specific research applications. This review also examines the limitations inherent in these models and introduces various strategies for expanding AD modeling across diverse species, emphasizing recent advancement in non-human primates (NHPs) as valuable models. Furthermore, potential insights from the integration of innovative technologies in AD research are discussed, while providing valuable perspectives on the future development of AD animal models.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 6","pages":"1835-1857"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Animal models of Alzheimer's disease: Current strategies and new directions.\",\"authors\":\"Qing Wang, Bai-Ting Zhu, Peng Lei\",\"doi\":\"10.24272/j.issn.2095-8137.2024.274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Animal models constructed using pathogenic factors have significantly advanced drug development for Alzheimer's disease (AD). These predominantly transgenic models, mainly in mice, replicate pathological phenotypes through gene mutations associated with familial AD cases, thus serving as vital tools for assessing drug efficacy and for performing mechanistic studies. However, the species-specific differences and complex, heterogeneous nature of AD etiology pose considerable challenges for the translatability of these animal models, limiting their utility in drug development. This review offers a comprehensive analysis of widely employed rodent (mice and rats) and non-rodent models ( <i>Danio rerio</i> (zebrafish), <i>Drosophila melanogaster</i>, and <i>Caenorhabditis</i> <i>elegans</i>), detailing their phenotypic features and specific research applications. This review also examines the limitations inherent in these models and introduces various strategies for expanding AD modeling across diverse species, emphasizing recent advancement in non-human primates (NHPs) as valuable models. Furthermore, potential insights from the integration of innovative technologies in AD research are discussed, while providing valuable perspectives on the future development of AD animal models.</p>\",\"PeriodicalId\":48636,\"journal\":{\"name\":\"Zoological Research\",\"volume\":\"45 6\",\"pages\":\"1835-1857\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.24272/j.issn.2095-8137.2024.274\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2024.274","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Animal models of Alzheimer's disease: Current strategies and new directions.
Animal models constructed using pathogenic factors have significantly advanced drug development for Alzheimer's disease (AD). These predominantly transgenic models, mainly in mice, replicate pathological phenotypes through gene mutations associated with familial AD cases, thus serving as vital tools for assessing drug efficacy and for performing mechanistic studies. However, the species-specific differences and complex, heterogeneous nature of AD etiology pose considerable challenges for the translatability of these animal models, limiting their utility in drug development. This review offers a comprehensive analysis of widely employed rodent (mice and rats) and non-rodent models ( Danio rerio (zebrafish), Drosophila melanogaster, and Caenorhabditiselegans), detailing their phenotypic features and specific research applications. This review also examines the limitations inherent in these models and introduces various strategies for expanding AD modeling across diverse species, emphasizing recent advancement in non-human primates (NHPs) as valuable models. Furthermore, potential insights from the integration of innovative technologies in AD research are discussed, while providing valuable perspectives on the future development of AD animal models.
期刊介绍:
Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.