有助于预测接受治疗的肝细胞癌的预后:影像学的未来。

IF 1.8 4区 医学 Q3 GASTROENTEROLOGY & HEPATOLOGY
Cristian Lindner
{"title":"有助于预测接受治疗的肝细胞癌的预后:影像学的未来。","authors":"Cristian Lindner","doi":"10.4240/wjgs.v16.i10.3377","DOIUrl":null,"url":null,"abstract":"<p><p>A novel nomogram model to predict the prognosis of hepatocellular carcinoma (HCC) treated with radiofrequency ablation and transarterial chemoembolization was recently published in the <i>World Journal of Gastrointestinal Surgery</i>. This model includes clinical and laboratory factors, but emerging imaging aspects, particularly from magnetic resonance imaging (MRI) and radiomics, could enhance the predictive accuracy thereof. Multiparametric MRI and deep learning radiomics models significantly improve prognostic predictions for the treatment of HCC. Incorporating advanced imaging features, such as peritumoral hypointensity and radiomics scores, alongside clinical factors, can refine prognostic models, aiding in personalized treatment and better predicting outcomes. This letter underscores the importance of integrating novel imaging techniques into prognostic tools to better manage and treat HCC.</p>","PeriodicalId":23759,"journal":{"name":"World Journal of Gastrointestinal Surgery","volume":"16 10","pages":"3377-3380"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577411/pdf/","citationCount":"0","resultStr":"{\"title\":\"Contributing to the prediction of prognosis for treated hepatocellular carcinoma: Imaging aspects that sculpt the future.\",\"authors\":\"Cristian Lindner\",\"doi\":\"10.4240/wjgs.v16.i10.3377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel nomogram model to predict the prognosis of hepatocellular carcinoma (HCC) treated with radiofrequency ablation and transarterial chemoembolization was recently published in the <i>World Journal of Gastrointestinal Surgery</i>. This model includes clinical and laboratory factors, but emerging imaging aspects, particularly from magnetic resonance imaging (MRI) and radiomics, could enhance the predictive accuracy thereof. Multiparametric MRI and deep learning radiomics models significantly improve prognostic predictions for the treatment of HCC. Incorporating advanced imaging features, such as peritumoral hypointensity and radiomics scores, alongside clinical factors, can refine prognostic models, aiding in personalized treatment and better predicting outcomes. This letter underscores the importance of integrating novel imaging techniques into prognostic tools to better manage and treat HCC.</p>\",\"PeriodicalId\":23759,\"journal\":{\"name\":\"World Journal of Gastrointestinal Surgery\",\"volume\":\"16 10\",\"pages\":\"3377-3380\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577411/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Gastrointestinal Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4240/wjgs.v16.i10.3377\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Gastrointestinal Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4240/wjgs.v16.i10.3377","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

最近,《世界胃肠外科杂志》(World Journal of Gastrointestinal Surgery)上发表了一个新的提名图模型,用于预测接受射频消融和经动脉化疗栓塞治疗的肝细胞癌(HCC)的预后。该模型包括临床和实验室因素,但新出现的成像方面,尤其是磁共振成像(MRI)和放射组学,可以提高其预测准确性。多参数核磁共振成像和深度学习放射组学模型可显著改善对HCC治疗的预后预测。将肿瘤周围低密度和放射组学评分等先进的成像特征与临床因素相结合,可以完善预后模型,有助于个性化治疗和更好地预测预后。这封信强调了将新型成像技术整合到预后工具中以更好地管理和治疗 HCC 的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contributing to the prediction of prognosis for treated hepatocellular carcinoma: Imaging aspects that sculpt the future.

A novel nomogram model to predict the prognosis of hepatocellular carcinoma (HCC) treated with radiofrequency ablation and transarterial chemoembolization was recently published in the World Journal of Gastrointestinal Surgery. This model includes clinical and laboratory factors, but emerging imaging aspects, particularly from magnetic resonance imaging (MRI) and radiomics, could enhance the predictive accuracy thereof. Multiparametric MRI and deep learning radiomics models significantly improve prognostic predictions for the treatment of HCC. Incorporating advanced imaging features, such as peritumoral hypointensity and radiomics scores, alongside clinical factors, can refine prognostic models, aiding in personalized treatment and better predicting outcomes. This letter underscores the importance of integrating novel imaging techniques into prognostic tools to better manage and treat HCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.00%
发文量
111
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信