Yi Zhang, Yue Li, Wan-Li Zhang, Yan Liang, Lin-Qiao Tang, Cui Peng, Hui-Min Liu, Min Zhu, Liang-Ju Ning
{"title":"对脆性组织样本进行多重免疫组化染色的优化方案。","authors":"Yi Zhang, Yue Li, Wan-Li Zhang, Yan Liang, Lin-Qiao Tang, Cui Peng, Hui-Min Liu, Min Zhu, Liang-Ju Ning","doi":"10.1089/ten.tec.2024.0223","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to the high occurrence of tissue detachment during the sample preparation process, the application of multiplex immunohistochemistry (mIHC) technology is limited in the field of fragile tissue samples, such as tendons, ligaments, and bones. To optimize a method for preparing sections for mIHC on fragile tissue samples, taking the human anterior cruciate ligament as an example, paraffin-embedded continuous sections with a thickness of 4 μm were divided into two groups: baking groups underwent routine section processing, and after being mounted on glass slides, they were baked at 65°C for 4 h, 8 h, or 24 h; ultraviolet (UV) photosensitive cross-linking groups used adhesive-coated slides for mounting and were directly subjected to UV light-induced cross-linking, with the cross-linking time set at 0 s, 20 s, 40 s, 1 min, 2 min, 3 min, 4 min, and 5 min, respectively. After deparaffinization and rehydration, we simulated the microwave step, which was most likely to cause tissue detachment during the mIHC experimental procedure, and then, the sections were stained with eosin. Finally, using the optimal cross-linking time selected from the UV cross-linking groups, mIHC staining of tendon and bone tissues was performed. After deparaffinization and rehydration, both groups were able to maintain the integrity of the tissue structure, except for the slides from the UV-sensitive cross-linking 0 s group, which showed complete tissue detachment. Following the seventh microwave treatment, the baking groups presented significant tissue detachment. The UV cross-linking groups were affected by the cross-linking time, and severe tissue detachment occurred with cross-linking times of 20 s, 40 s, and 5 min, whereas the tissues cross-linked for 1 min, 2 min, 3 min, and 4 min all maintained complete tissue morphology and structure. Finally, after 2 min of cross-linking, the results of spectral imaging revealed that the tissue morphology and structure were intact. During the process of mIHC staining, photocrosslinking with UV irradiation for 1-4 min effectively preserves the integrity of the tissue morphological structure.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimized Protocol for Multiple Immunohistochemical Staining of Fragile Tissue Samples.\",\"authors\":\"Yi Zhang, Yue Li, Wan-Li Zhang, Yan Liang, Lin-Qiao Tang, Cui Peng, Hui-Min Liu, Min Zhu, Liang-Ju Ning\",\"doi\":\"10.1089/ten.tec.2024.0223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Owing to the high occurrence of tissue detachment during the sample preparation process, the application of multiplex immunohistochemistry (mIHC) technology is limited in the field of fragile tissue samples, such as tendons, ligaments, and bones. To optimize a method for preparing sections for mIHC on fragile tissue samples, taking the human anterior cruciate ligament as an example, paraffin-embedded continuous sections with a thickness of 4 μm were divided into two groups: baking groups underwent routine section processing, and after being mounted on glass slides, they were baked at 65°C for 4 h, 8 h, or 24 h; ultraviolet (UV) photosensitive cross-linking groups used adhesive-coated slides for mounting and were directly subjected to UV light-induced cross-linking, with the cross-linking time set at 0 s, 20 s, 40 s, 1 min, 2 min, 3 min, 4 min, and 5 min, respectively. After deparaffinization and rehydration, we simulated the microwave step, which was most likely to cause tissue detachment during the mIHC experimental procedure, and then, the sections were stained with eosin. Finally, using the optimal cross-linking time selected from the UV cross-linking groups, mIHC staining of tendon and bone tissues was performed. After deparaffinization and rehydration, both groups were able to maintain the integrity of the tissue structure, except for the slides from the UV-sensitive cross-linking 0 s group, which showed complete tissue detachment. Following the seventh microwave treatment, the baking groups presented significant tissue detachment. The UV cross-linking groups were affected by the cross-linking time, and severe tissue detachment occurred with cross-linking times of 20 s, 40 s, and 5 min, whereas the tissues cross-linked for 1 min, 2 min, 3 min, and 4 min all maintained complete tissue morphology and structure. Finally, after 2 min of cross-linking, the results of spectral imaging revealed that the tissue morphology and structure were intact. During the process of mIHC staining, photocrosslinking with UV irradiation for 1-4 min effectively preserves the integrity of the tissue morphological structure.</p>\",\"PeriodicalId\":23154,\"journal\":{\"name\":\"Tissue engineering. Part C, Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering. Part C, Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.tec.2024.0223\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tec.2024.0223","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
An Optimized Protocol for Multiple Immunohistochemical Staining of Fragile Tissue Samples.
Owing to the high occurrence of tissue detachment during the sample preparation process, the application of multiplex immunohistochemistry (mIHC) technology is limited in the field of fragile tissue samples, such as tendons, ligaments, and bones. To optimize a method for preparing sections for mIHC on fragile tissue samples, taking the human anterior cruciate ligament as an example, paraffin-embedded continuous sections with a thickness of 4 μm were divided into two groups: baking groups underwent routine section processing, and after being mounted on glass slides, they were baked at 65°C for 4 h, 8 h, or 24 h; ultraviolet (UV) photosensitive cross-linking groups used adhesive-coated slides for mounting and were directly subjected to UV light-induced cross-linking, with the cross-linking time set at 0 s, 20 s, 40 s, 1 min, 2 min, 3 min, 4 min, and 5 min, respectively. After deparaffinization and rehydration, we simulated the microwave step, which was most likely to cause tissue detachment during the mIHC experimental procedure, and then, the sections were stained with eosin. Finally, using the optimal cross-linking time selected from the UV cross-linking groups, mIHC staining of tendon and bone tissues was performed. After deparaffinization and rehydration, both groups were able to maintain the integrity of the tissue structure, except for the slides from the UV-sensitive cross-linking 0 s group, which showed complete tissue detachment. Following the seventh microwave treatment, the baking groups presented significant tissue detachment. The UV cross-linking groups were affected by the cross-linking time, and severe tissue detachment occurred with cross-linking times of 20 s, 40 s, and 5 min, whereas the tissues cross-linked for 1 min, 2 min, 3 min, and 4 min all maintained complete tissue morphology and structure. Finally, after 2 min of cross-linking, the results of spectral imaging revealed that the tissue morphology and structure were intact. During the process of mIHC staining, photocrosslinking with UV irradiation for 1-4 min effectively preserves the integrity of the tissue morphological structure.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.