LIC-CGAN:利用深度学习的大面积掩膜快速光刻潜影计算方法。

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2024-11-04 DOI:10.1364/OE.537921
Yihan Zhao, Lisong Dong, Ziqi Li, Yayi Wei
{"title":"LIC-CGAN:利用深度学习的大面积掩膜快速光刻潜影计算方法。","authors":"Yihan Zhao, Lisong Dong, Ziqi Li, Yayi Wei","doi":"10.1364/OE.537921","DOIUrl":null,"url":null,"abstract":"<p><p>Latent image calculation for large-area masks is an indispensable but time-consuming step in lithography simulation. This paper presents LIC-CGAN, a fast method for three-dimensional (3D) latent image calculation of large-area masks using deep learning. Initially, the library of mask clips and their corresponding latent images is established, which is then used to train conditional generative adversarial networks (CGANs). The large area layout is divided into mask clips based on local pattern features. If a mask clip matches one from the training library, its latent image can be obtained directly. Otherwise, the CGANs are employed to calculate its local latent image. Finally, all local latent images are synthesized to simulate the entire latent image. The proposed method is applied to lithography simulations for display panels, demonstrating high accuracy and a speed-up of 2.5 to 4.7 times compared to the rigorous process.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 23","pages":"40931-40944"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LIC-CGAN: fast lithography latent images calculation method for large-area masks using deep learning.\",\"authors\":\"Yihan Zhao, Lisong Dong, Ziqi Li, Yayi Wei\",\"doi\":\"10.1364/OE.537921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Latent image calculation for large-area masks is an indispensable but time-consuming step in lithography simulation. This paper presents LIC-CGAN, a fast method for three-dimensional (3D) latent image calculation of large-area masks using deep learning. Initially, the library of mask clips and their corresponding latent images is established, which is then used to train conditional generative adversarial networks (CGANs). The large area layout is divided into mask clips based on local pattern features. If a mask clip matches one from the training library, its latent image can be obtained directly. Otherwise, the CGANs are employed to calculate its local latent image. Finally, all local latent images are synthesized to simulate the entire latent image. The proposed method is applied to lithography simulations for display panels, demonstrating high accuracy and a speed-up of 2.5 to 4.7 times compared to the rigorous process.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 23\",\"pages\":\"40931-40944\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.537921\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.537921","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

大面积掩膜的潜影计算是光刻模拟中不可或缺但却非常耗时的步骤。本文介绍了一种利用深度学习进行大面积掩膜三维(3D)潜像计算的快速方法 LIC-CGAN。首先,建立掩模片段及其对应的潜像库,然后利用该库训练条件生成对抗网络(CGAN)。根据局部模式特征将大面积布局划分为掩码片段。如果掩模片段与训练库中的掩模片段匹配,则可直接获得其潜在图像。否则,将使用 CGAN 计算其局部潜像。最后,合成所有局部潜像以模拟整个潜像。所提出的方法被应用于显示面板的光刻模拟,显示出很高的准确性,与严格的流程相比,速度提高了 2.5 到 4.7 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LIC-CGAN: fast lithography latent images calculation method for large-area masks using deep learning.

Latent image calculation for large-area masks is an indispensable but time-consuming step in lithography simulation. This paper presents LIC-CGAN, a fast method for three-dimensional (3D) latent image calculation of large-area masks using deep learning. Initially, the library of mask clips and their corresponding latent images is established, which is then used to train conditional generative adversarial networks (CGANs). The large area layout is divided into mask clips based on local pattern features. If a mask clip matches one from the training library, its latent image can be obtained directly. Otherwise, the CGANs are employed to calculate its local latent image. Finally, all local latent images are synthesized to simulate the entire latent image. The proposed method is applied to lithography simulations for display panels, demonstrating high accuracy and a speed-up of 2.5 to 4.7 times compared to the rigorous process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信