Song Song, Po Wu, Yejun Liu, Lun Zhao, Tingwei Wu, Xiangyu Liu, Lei Guo
{"title":"利用红外 LED 标识实现室内光学摄像机通信和定位融合系统。","authors":"Song Song, Po Wu, Yejun Liu, Lun Zhao, Tingwei Wu, Xiangyu Liu, Lei Guo","doi":"10.1364/OE.538088","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, with the development of communication and positioning technologies, progressively higher demands have been placed on the timeliness of indoor communication and the effectiveness of indoor positioning. This paper proposes a low-cost and full-time domain coverage indoor communication and localization fusion system that uses an infrared camera to identify mobile LEDs based on region of interest optical camera communication (RoI-OCC) and calculate three-dimensional (3D) world coordinates based on perspective-n-point (PnP) algorithm. An intermediate delimiter modulation-demodulation method is designed to achieve asynchronous OCC. In processing infrared images, a region-growth-based absolute-directional-mean-difference (RG-ADMD) algorithm is developed to detect infrared targets and recover the scale. Additionally, a local-contrast-method-based Lucas-Kanade (LCM-LK) optical flow estimation algorithm is designed to track infrared targets and determine the centroid coordinates of pixels. In a 5×5 m experimental area, the established system can achieve a target detection recall rate of over 85%, the asynchronous OCC with error-free transmission and an average 3D positioning accuracy of 2.01 cm under a LCM-LK tracking algorithm.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 23","pages":"41361-41375"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of an indoor optical camera communication and localization fusion system using infrared LED markers.\",\"authors\":\"Song Song, Po Wu, Yejun Liu, Lun Zhao, Tingwei Wu, Xiangyu Liu, Lei Guo\",\"doi\":\"10.1364/OE.538088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, with the development of communication and positioning technologies, progressively higher demands have been placed on the timeliness of indoor communication and the effectiveness of indoor positioning. This paper proposes a low-cost and full-time domain coverage indoor communication and localization fusion system that uses an infrared camera to identify mobile LEDs based on region of interest optical camera communication (RoI-OCC) and calculate three-dimensional (3D) world coordinates based on perspective-n-point (PnP) algorithm. An intermediate delimiter modulation-demodulation method is designed to achieve asynchronous OCC. In processing infrared images, a region-growth-based absolute-directional-mean-difference (RG-ADMD) algorithm is developed to detect infrared targets and recover the scale. Additionally, a local-contrast-method-based Lucas-Kanade (LCM-LK) optical flow estimation algorithm is designed to track infrared targets and determine the centroid coordinates of pixels. In a 5×5 m experimental area, the established system can achieve a target detection recall rate of over 85%, the asynchronous OCC with error-free transmission and an average 3D positioning accuracy of 2.01 cm under a LCM-LK tracking algorithm.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 23\",\"pages\":\"41361-41375\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.538088\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.538088","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Implementation of an indoor optical camera communication and localization fusion system using infrared LED markers.
Recently, with the development of communication and positioning technologies, progressively higher demands have been placed on the timeliness of indoor communication and the effectiveness of indoor positioning. This paper proposes a low-cost and full-time domain coverage indoor communication and localization fusion system that uses an infrared camera to identify mobile LEDs based on region of interest optical camera communication (RoI-OCC) and calculate three-dimensional (3D) world coordinates based on perspective-n-point (PnP) algorithm. An intermediate delimiter modulation-demodulation method is designed to achieve asynchronous OCC. In processing infrared images, a region-growth-based absolute-directional-mean-difference (RG-ADMD) algorithm is developed to detect infrared targets and recover the scale. Additionally, a local-contrast-method-based Lucas-Kanade (LCM-LK) optical flow estimation algorithm is designed to track infrared targets and determine the centroid coordinates of pixels. In a 5×5 m experimental area, the established system can achieve a target detection recall rate of over 85%, the asynchronous OCC with error-free transmission and an average 3D positioning accuracy of 2.01 cm under a LCM-LK tracking algorithm.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.