{"title":"结合模拟退火进行混合拓扑优化,设计用于增强现实波导的非极化高效自由形态元表面内耦合器。","authors":"Haigang Liang, Siyu Dong, Zeyong Wei, Zhanshan Wang, Xinbin Cheng","doi":"10.1364/OE.534453","DOIUrl":null,"url":null,"abstract":"<p><p>High-efficiency in-couplers with unpolarized responses are crucial for the performance of waveguide augmented reality displays. Freeform quasi-3D metasurfaces (FQ3DM), which integrate freeform metasurfaces with multilayer films, is one possible solution to achieve this. However, the performance of FQ3DM is limited by the lack of inverse design algorithms capable of optimizing its overall structure. In this work, we proposed a hybrid topology optimization combining simulated annealing (HTO-SA) algorithm that alternates between topology optimization and simulated annealing to find the global optimum for both the shape and thickness of FQ3DM. With the HTO-SA algorithm, we designed an unpolarized high-efficiency in-coupler that achieves an average efficiency of 90% across a 20° field-of-view for both transverse electric and transverse magnetic polarization. We envision that our proposed approach can be generalized to the design of high-performance diffractive optical devices.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 23","pages":"40794-40805"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid topology optimization combining simulated annealing for designing unpolarized high-efficiency freeform metasurface in-coupler for augmented reality waveguide.\",\"authors\":\"Haigang Liang, Siyu Dong, Zeyong Wei, Zhanshan Wang, Xinbin Cheng\",\"doi\":\"10.1364/OE.534453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-efficiency in-couplers with unpolarized responses are crucial for the performance of waveguide augmented reality displays. Freeform quasi-3D metasurfaces (FQ3DM), which integrate freeform metasurfaces with multilayer films, is one possible solution to achieve this. However, the performance of FQ3DM is limited by the lack of inverse design algorithms capable of optimizing its overall structure. In this work, we proposed a hybrid topology optimization combining simulated annealing (HTO-SA) algorithm that alternates between topology optimization and simulated annealing to find the global optimum for both the shape and thickness of FQ3DM. With the HTO-SA algorithm, we designed an unpolarized high-efficiency in-coupler that achieves an average efficiency of 90% across a 20° field-of-view for both transverse electric and transverse magnetic polarization. We envision that our proposed approach can be generalized to the design of high-performance diffractive optical devices.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 23\",\"pages\":\"40794-40805\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.534453\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.534453","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Hybrid topology optimization combining simulated annealing for designing unpolarized high-efficiency freeform metasurface in-coupler for augmented reality waveguide.
High-efficiency in-couplers with unpolarized responses are crucial for the performance of waveguide augmented reality displays. Freeform quasi-3D metasurfaces (FQ3DM), which integrate freeform metasurfaces with multilayer films, is one possible solution to achieve this. However, the performance of FQ3DM is limited by the lack of inverse design algorithms capable of optimizing its overall structure. In this work, we proposed a hybrid topology optimization combining simulated annealing (HTO-SA) algorithm that alternates between topology optimization and simulated annealing to find the global optimum for both the shape and thickness of FQ3DM. With the HTO-SA algorithm, we designed an unpolarized high-efficiency in-coupler that achieves an average efficiency of 90% across a 20° field-of-view for both transverse electric and transverse magnetic polarization. We envision that our proposed approach can be generalized to the design of high-performance diffractive optical devices.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.