基于石墨烯与局部横电等离子模式之间增强的相互作用的等离子调制器。

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2024-11-04 DOI:10.1364/OE.539110
Anle Hou, Yulin Wang, Feihu Geng, Yong Zhang, Chengping Huang, Lin Zhou
{"title":"基于石墨烯与局部横电等离子模式之间增强的相互作用的等离子调制器。","authors":"Anle Hou, Yulin Wang, Feihu Geng, Yong Zhang, Chengping Huang, Lin Zhou","doi":"10.1364/OE.539110","DOIUrl":null,"url":null,"abstract":"<p><p>Active plasmonic modulators with high modulation depth, low energy consumption, ultra-fast speed, and small footprint are of interest and particular significance for nanophotonics and integrated optics. Here by constructing a transverse-electric (TE) plasmonic mode and maximizing the in-plane component localized on the graphene surface, we propose a high-performing plasmonic modulator based on a graphene/split ring-like plasmonic waveguide (SRPW) system with a record high modulation depth (20.46 dB/µm) and suppressed insertion loss (0.248 dB/µm) at telecom wavelength 1310 nm, simultaneously possessing pronounced advantage in broadband ability (800-1650 nm) and superior electrical performance with energy consumption of 0.43 fJ/bit and modulation speed of 200 GHz. This innovative design provides a novel approach and idea for enhancing the interaction between light and matter in the waveguide system and will certainly inspire new schemes for the development of on-chip integrated optoelectronic devices.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 23","pages":"40730-40740"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmonic modulators based on enhanced interaction between graphene and localized transverse-electric plasmonic mode.\",\"authors\":\"Anle Hou, Yulin Wang, Feihu Geng, Yong Zhang, Chengping Huang, Lin Zhou\",\"doi\":\"10.1364/OE.539110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Active plasmonic modulators with high modulation depth, low energy consumption, ultra-fast speed, and small footprint are of interest and particular significance for nanophotonics and integrated optics. Here by constructing a transverse-electric (TE) plasmonic mode and maximizing the in-plane component localized on the graphene surface, we propose a high-performing plasmonic modulator based on a graphene/split ring-like plasmonic waveguide (SRPW) system with a record high modulation depth (20.46 dB/µm) and suppressed insertion loss (0.248 dB/µm) at telecom wavelength 1310 nm, simultaneously possessing pronounced advantage in broadband ability (800-1650 nm) and superior electrical performance with energy consumption of 0.43 fJ/bit and modulation speed of 200 GHz. This innovative design provides a novel approach and idea for enhancing the interaction between light and matter in the waveguide system and will certainly inspire new schemes for the development of on-chip integrated optoelectronic devices.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 23\",\"pages\":\"40730-40740\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.539110\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.539110","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

有源等离子体调制器具有调制深度高、能耗低、速度快、占地面积小等优点,对纳米光子学和集成光学具有重要意义。在这里,通过构建横向电(TE)质子模式并最大限度地提高石墨烯表面局部的面内分量,我们提出了一种基于石墨烯/分裂环状质子波导(SRPW)系统的高性能质子调制器,它具有创纪录的高调制深度(20.46 dB/µm),并抑制了电信波长 1310 nm 处的插入损耗(0.248 dB/µm),同时在宽带能力(800-1650 nm)方面具有明显优势,并具有能耗为 0.43 fJ/bit、调制速度为 200 GHz 的卓越电气性能。这一创新设计为增强波导系统中光与物质之间的相互作用提供了新的方法和思路,必将为片上集成光电器件的开发带来新的启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasmonic modulators based on enhanced interaction between graphene and localized transverse-electric plasmonic mode.

Active plasmonic modulators with high modulation depth, low energy consumption, ultra-fast speed, and small footprint are of interest and particular significance for nanophotonics and integrated optics. Here by constructing a transverse-electric (TE) plasmonic mode and maximizing the in-plane component localized on the graphene surface, we propose a high-performing plasmonic modulator based on a graphene/split ring-like plasmonic waveguide (SRPW) system with a record high modulation depth (20.46 dB/µm) and suppressed insertion loss (0.248 dB/µm) at telecom wavelength 1310 nm, simultaneously possessing pronounced advantage in broadband ability (800-1650 nm) and superior electrical performance with energy consumption of 0.43 fJ/bit and modulation speed of 200 GHz. This innovative design provides a novel approach and idea for enhancing the interaction between light and matter in the waveguide system and will certainly inspire new schemes for the development of on-chip integrated optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信