基于强化学习的 87Rb 原子偏振梯度冷却多参数优化。

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2024-11-04 DOI:10.1364/OE.537239
Changwen Liang, Shaojun Gao, Jixun Liu, Guochao Wang, Shuhua Yan, Jun Yang, Lingxiao Zhu, Xiaoxiao Ma
{"title":"基于强化学习的 87Rb 原子偏振梯度冷却多参数优化。","authors":"Changwen Liang, Shaojun Gao, Jixun Liu, Guochao Wang, Shuhua Yan, Jun Yang, Lingxiao Zhu, Xiaoxiao Ma","doi":"10.1364/OE.537239","DOIUrl":null,"url":null,"abstract":"<p><p>Polarization gradient cooling (PGC) plays an important role in many cold atom applications including the formation of Bose-Einstein condensates (BECs) and cooling of single atoms. Traditional parameter optimization of PGC usually relies on subjective expertise, faces challenges in fine manipulation, and exhibits low optimization efficiency. Here, we propose a segmented control method that differs from the traditional PGC process by expanding the experiment parameters from 3 to 30. Subsequently, the conventional timing optimization problem is reformulated as a Markov decision process (MDP), and the experiment parameters are optimized using a reinforcement learning model. With proper settings of hyperparameters, the learning process exhibits good convergence and powerful parameter exploration capabilities. Finally, we capture ∼4.3 × 10<sup>8</sup> cold atoms, with a phase space density of ∼7.1 × 10<sup>-4</sup> at a temperature of ∼3.7 µK in ∼18.8 min. Our work paves the way for the intelligent preparation of degenerate quantum gas.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 23","pages":"40364-40374"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-parameter optimization of polarization gradient cooling for <sup>87</sup>Rb atoms based on reinforcement learning.\",\"authors\":\"Changwen Liang, Shaojun Gao, Jixun Liu, Guochao Wang, Shuhua Yan, Jun Yang, Lingxiao Zhu, Xiaoxiao Ma\",\"doi\":\"10.1364/OE.537239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polarization gradient cooling (PGC) plays an important role in many cold atom applications including the formation of Bose-Einstein condensates (BECs) and cooling of single atoms. Traditional parameter optimization of PGC usually relies on subjective expertise, faces challenges in fine manipulation, and exhibits low optimization efficiency. Here, we propose a segmented control method that differs from the traditional PGC process by expanding the experiment parameters from 3 to 30. Subsequently, the conventional timing optimization problem is reformulated as a Markov decision process (MDP), and the experiment parameters are optimized using a reinforcement learning model. With proper settings of hyperparameters, the learning process exhibits good convergence and powerful parameter exploration capabilities. Finally, we capture ∼4.3 × 10<sup>8</sup> cold atoms, with a phase space density of ∼7.1 × 10<sup>-4</sup> at a temperature of ∼3.7 µK in ∼18.8 min. Our work paves the way for the intelligent preparation of degenerate quantum gas.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 23\",\"pages\":\"40364-40374\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.537239\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.537239","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

偏振梯度冷却(PGC)在许多冷原子应用中发挥着重要作用,包括玻色-爱因斯坦凝聚体(BEC)的形成和单原子冷却。传统的 PGC 参数优化通常依赖于主观的专业知识,在精细操作方面面临挑战,并且优化效率较低。在这里,我们提出了一种有别于传统 PGC 过程的分段控制方法,将实验参数从 3 个扩展到 30 个。随后,传统的定时优化问题被重新表述为马尔可夫决策过程(MDP),并使用强化学习模型对实验参数进行优化。通过适当的超参数设置,学习过程表现出良好的收敛性和强大的参数探索能力。最后,我们在 ∼18.8 分钟内捕获了 ∼4.3 × 108 个冷原子,相空间密度为 ∼7.1 × 10-4,温度为 ∼3.7 µK。我们的工作为智能制备退化量子气体铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-parameter optimization of polarization gradient cooling for 87Rb atoms based on reinforcement learning.

Polarization gradient cooling (PGC) plays an important role in many cold atom applications including the formation of Bose-Einstein condensates (BECs) and cooling of single atoms. Traditional parameter optimization of PGC usually relies on subjective expertise, faces challenges in fine manipulation, and exhibits low optimization efficiency. Here, we propose a segmented control method that differs from the traditional PGC process by expanding the experiment parameters from 3 to 30. Subsequently, the conventional timing optimization problem is reformulated as a Markov decision process (MDP), and the experiment parameters are optimized using a reinforcement learning model. With proper settings of hyperparameters, the learning process exhibits good convergence and powerful parameter exploration capabilities. Finally, we capture ∼4.3 × 108 cold atoms, with a phase space density of ∼7.1 × 10-4 at a temperature of ∼3.7 µK in ∼18.8 min. Our work paves the way for the intelligent preparation of degenerate quantum gas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信