大语言建模和深度学习为 RNA 结构预测提供了启示。

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
{"title":"大语言建模和深度学习为 RNA 结构预测提供了启示。","authors":"","doi":"10.1038/s41592-024-02488-z","DOIUrl":null,"url":null,"abstract":"We present an RNA language model-based deep learning pipeline for accurate and rapid de novo RNA 3D structure prediction, demonstrating strong accuracy in modeling single-stranded RNAs and excellent generalization across RNA families and types while also being capable of capturing local features such as interhelical angles and secondary structures.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 12","pages":"2237-2238"},"PeriodicalIF":36.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large language modeling and deep learning shed light on RNA structure prediction\",\"authors\":\"\",\"doi\":\"10.1038/s41592-024-02488-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an RNA language model-based deep learning pipeline for accurate and rapid de novo RNA 3D structure prediction, demonstrating strong accuracy in modeling single-stranded RNAs and excellent generalization across RNA families and types while also being capable of capturing local features such as interhelical angles and secondary structures.\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"21 12\",\"pages\":\"2237-2238\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41592-024-02488-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-024-02488-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个基于RNA语言模型的深度学习管道,用于准确和快速的从头开始RNA 3D结构预测,展示了单链RNA建模的高准确性和跨RNA家族和类型的出色泛化,同时也能够捕获局部特征,如螺旋间角和二级结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large language modeling and deep learning shed light on RNA structure prediction

Large language modeling and deep learning shed light on RNA structure prediction
We present an RNA language model-based deep learning pipeline for accurate and rapid de novo RNA 3D structure prediction, demonstrating strong accuracy in modeling single-stranded RNAs and excellent generalization across RNA families and types while also being capable of capturing local features such as interhelical angles and secondary structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信