Aseel Kashkush, Judith Furth-Lavi, Jiri Hodon, Raphael I Benhamou
{"title":"致癌 RNA 结合蛋白 Lin28 的 PROTAC 和分子胶降解剂。","authors":"Aseel Kashkush, Judith Furth-Lavi, Jiri Hodon, Raphael I Benhamou","doi":"10.1002/mabi.202400427","DOIUrl":null,"url":null,"abstract":"<p><p>The interaction between proteins and RNA is crucial for regulating gene expression, with dysregulation often linked to diseases such as cancer. The RNA-binding protein (RBP) Lin28 inhibits the tumor suppressor microRNA (miRNA) let-7, making it a significant oncogenic factor in tumor progression and metastasis. In this study, a small molecule is used that binds Lin28 and blocks its inhibition of let-7. To enhance its efficay, the inhibitor is transformed into degraders via two degradation approaches: Proteolysis Targeting Chimera (PROTAC) and molecular glue. A series of PROTAC bifunctional molecules and molecular glues capable of degrading Lin28 in cells.is developed Both strategies significantly reduce overexpressed Lin28 and alleviate cancer cellular phenotypes. Notably, the molecular glue approach demonstrates exceptional potency, surpassing PROTAC in several aspects. This outcome underscores the superior efficiency of the molecular glue approach for targeted Lin28 degradation and highlights its potential for addressing associated diseases with small molecules. Innovative small molecule strategies such as molecular glue and PROTAC technology for targeted RBP degradation, hold promise for opening new avenues in RNA modulation and addressing related diseases.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400427"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROTAC and Molecular Glue Degraders of the Oncogenic RNA Binding Protein Lin28.\",\"authors\":\"Aseel Kashkush, Judith Furth-Lavi, Jiri Hodon, Raphael I Benhamou\",\"doi\":\"10.1002/mabi.202400427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interaction between proteins and RNA is crucial for regulating gene expression, with dysregulation often linked to diseases such as cancer. The RNA-binding protein (RBP) Lin28 inhibits the tumor suppressor microRNA (miRNA) let-7, making it a significant oncogenic factor in tumor progression and metastasis. In this study, a small molecule is used that binds Lin28 and blocks its inhibition of let-7. To enhance its efficay, the inhibitor is transformed into degraders via two degradation approaches: Proteolysis Targeting Chimera (PROTAC) and molecular glue. A series of PROTAC bifunctional molecules and molecular glues capable of degrading Lin28 in cells.is developed Both strategies significantly reduce overexpressed Lin28 and alleviate cancer cellular phenotypes. Notably, the molecular glue approach demonstrates exceptional potency, surpassing PROTAC in several aspects. This outcome underscores the superior efficiency of the molecular glue approach for targeted Lin28 degradation and highlights its potential for addressing associated diseases with small molecules. Innovative small molecule strategies such as molecular glue and PROTAC technology for targeted RBP degradation, hold promise for opening new avenues in RNA modulation and addressing related diseases.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\" \",\"pages\":\"e2400427\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mabi.202400427\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400427","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PROTAC and Molecular Glue Degraders of the Oncogenic RNA Binding Protein Lin28.
The interaction between proteins and RNA is crucial for regulating gene expression, with dysregulation often linked to diseases such as cancer. The RNA-binding protein (RBP) Lin28 inhibits the tumor suppressor microRNA (miRNA) let-7, making it a significant oncogenic factor in tumor progression and metastasis. In this study, a small molecule is used that binds Lin28 and blocks its inhibition of let-7. To enhance its efficay, the inhibitor is transformed into degraders via two degradation approaches: Proteolysis Targeting Chimera (PROTAC) and molecular glue. A series of PROTAC bifunctional molecules and molecular glues capable of degrading Lin28 in cells.is developed Both strategies significantly reduce overexpressed Lin28 and alleviate cancer cellular phenotypes. Notably, the molecular glue approach demonstrates exceptional potency, surpassing PROTAC in several aspects. This outcome underscores the superior efficiency of the molecular glue approach for targeted Lin28 degradation and highlights its potential for addressing associated diseases with small molecules. Innovative small molecule strategies such as molecular glue and PROTAC technology for targeted RBP degradation, hold promise for opening new avenues in RNA modulation and addressing related diseases.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.