{"title":"与生物膜相关的耐多药和耐甲氧西林金黄色葡萄球菌感染。","authors":"Shila Shrestha, Ajaya Basnet, Rajendra Maharjan, Bijaya Basnet, Pramod Joshi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong> The ability of Staphylococcus aureus to form biofilmsâ€\"architectural complexes that cause chronic and recalcitrant infectionsâ€\"along with its notorious variant, methicillin-resistant Staphylococcus aureus (MRSA), leads to multidrug-resistant (MDR) infections that are challenging to treat with antibiotics. This cross-sectional study investigated the prevalence of S. aureus infections in Kanti Children’s Hospital and characterized the antibiograms of MDR, MRSA, and biofilm-forming strains, along with their coexistence.</p><p><strong>Methods: </strong> S. aureus strains were isolated and identified from clinical samples and tested for antibiograms following standard microbiology guidelines. MDR strains were non-susceptible to at least one agent in three antimicrobial categories, whereas MRSA strains were cefoxitin-resistant. The microtiter plate method was used to detect biofilms. Statistical analyses were performed using SPSS version 17.0.</p><p><strong>Results: </strong> S. aureus was detected in 9.0% (11.4-6.6%, 95% Confidence Interval) of 543 samples, primarily from pus (79.6%, 39/49). Children aged 1 to <3 years most commonly contracted infections (30.6%, 15/49), and males (67.4%, 33/49) had twice as many infections as females (32.7%, 16/49). As high as 84.7% (83/98) of strains were penicillin-resistant, while 18.4% (27/147) were aminoglycoside-resistant. MDR accounted for 79.6% (39/49) of all S. aureus infections, while MRSA and biofilm-formers accounted for 67.6% (33/49) and 24.5% (12/49), respectively. Fluoroquinolone resistance in non-MDR-MRSA-biofilm-formers, MDR-MRSA, MDR-biofilm-formers, and MRSA-biofilm-formers was 31.3%, 46.8%, 58.3%, and 60.0%, respectively, while aminoglycoside resistance was 0%, 32.3%, 50.0%, and 45.0%, and penicillin resistance was 87.5%, 85.5%, 100.0%, and 100.0%.</p><p><strong>Conclusions: </strong> MDR-isolates and MRSA caused nearly four-fifths of S. aureus infections. Compared to MDR and MRSA strains, biofilm-formers triggered higher levels of antimicrobial resistance.</p>","PeriodicalId":16380,"journal":{"name":"Journal of Nepal Health Research Council","volume":"22 2","pages":"410-418"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofilm-Associated Multidrug-Resistant and Methicillin-Resistant Staphylococcus aureus Infections.\",\"authors\":\"Shila Shrestha, Ajaya Basnet, Rajendra Maharjan, Bijaya Basnet, Pramod Joshi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong> The ability of Staphylococcus aureus to form biofilmsâ€\\\"architectural complexes that cause chronic and recalcitrant infectionsâ€\\\"along with its notorious variant, methicillin-resistant Staphylococcus aureus (MRSA), leads to multidrug-resistant (MDR) infections that are challenging to treat with antibiotics. This cross-sectional study investigated the prevalence of S. aureus infections in Kanti Children’s Hospital and characterized the antibiograms of MDR, MRSA, and biofilm-forming strains, along with their coexistence.</p><p><strong>Methods: </strong> S. aureus strains were isolated and identified from clinical samples and tested for antibiograms following standard microbiology guidelines. MDR strains were non-susceptible to at least one agent in three antimicrobial categories, whereas MRSA strains were cefoxitin-resistant. The microtiter plate method was used to detect biofilms. Statistical analyses were performed using SPSS version 17.0.</p><p><strong>Results: </strong> S. aureus was detected in 9.0% (11.4-6.6%, 95% Confidence Interval) of 543 samples, primarily from pus (79.6%, 39/49). Children aged 1 to <3 years most commonly contracted infections (30.6%, 15/49), and males (67.4%, 33/49) had twice as many infections as females (32.7%, 16/49). As high as 84.7% (83/98) of strains were penicillin-resistant, while 18.4% (27/147) were aminoglycoside-resistant. MDR accounted for 79.6% (39/49) of all S. aureus infections, while MRSA and biofilm-formers accounted for 67.6% (33/49) and 24.5% (12/49), respectively. Fluoroquinolone resistance in non-MDR-MRSA-biofilm-formers, MDR-MRSA, MDR-biofilm-formers, and MRSA-biofilm-formers was 31.3%, 46.8%, 58.3%, and 60.0%, respectively, while aminoglycoside resistance was 0%, 32.3%, 50.0%, and 45.0%, and penicillin resistance was 87.5%, 85.5%, 100.0%, and 100.0%.</p><p><strong>Conclusions: </strong> MDR-isolates and MRSA caused nearly four-fifths of S. aureus infections. Compared to MDR and MRSA strains, biofilm-formers triggered higher levels of antimicrobial resistance.</p>\",\"PeriodicalId\":16380,\"journal\":{\"name\":\"Journal of Nepal Health Research Council\",\"volume\":\"22 2\",\"pages\":\"410-418\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nepal Health Research Council\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nepal Health Research Council","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Biofilm-Associated Multidrug-Resistant and Methicillin-Resistant Staphylococcus aureus Infections.
Background: The ability of Staphylococcus aureus to form biofilmsâ€"architectural complexes that cause chronic and recalcitrant infectionsâ€"along with its notorious variant, methicillin-resistant Staphylococcus aureus (MRSA), leads to multidrug-resistant (MDR) infections that are challenging to treat with antibiotics. This cross-sectional study investigated the prevalence of S. aureus infections in Kanti Children’s Hospital and characterized the antibiograms of MDR, MRSA, and biofilm-forming strains, along with their coexistence.
Methods: S. aureus strains were isolated and identified from clinical samples and tested for antibiograms following standard microbiology guidelines. MDR strains were non-susceptible to at least one agent in three antimicrobial categories, whereas MRSA strains were cefoxitin-resistant. The microtiter plate method was used to detect biofilms. Statistical analyses were performed using SPSS version 17.0.
Results: S. aureus was detected in 9.0% (11.4-6.6%, 95% Confidence Interval) of 543 samples, primarily from pus (79.6%, 39/49). Children aged 1 to <3 years most commonly contracted infections (30.6%, 15/49), and males (67.4%, 33/49) had twice as many infections as females (32.7%, 16/49). As high as 84.7% (83/98) of strains were penicillin-resistant, while 18.4% (27/147) were aminoglycoside-resistant. MDR accounted for 79.6% (39/49) of all S. aureus infections, while MRSA and biofilm-formers accounted for 67.6% (33/49) and 24.5% (12/49), respectively. Fluoroquinolone resistance in non-MDR-MRSA-biofilm-formers, MDR-MRSA, MDR-biofilm-formers, and MRSA-biofilm-formers was 31.3%, 46.8%, 58.3%, and 60.0%, respectively, while aminoglycoside resistance was 0%, 32.3%, 50.0%, and 45.0%, and penicillin resistance was 87.5%, 85.5%, 100.0%, and 100.0%.
Conclusions: MDR-isolates and MRSA caused nearly four-fifths of S. aureus infections. Compared to MDR and MRSA strains, biofilm-formers triggered higher levels of antimicrobial resistance.
期刊介绍:
The journal publishes articles related to researches done in the field of biomedical sciences related to all the discipline of the medical sciences, medical education, public health, health care management, including ethical and social issues pertaining to health. The journal gives preference to clinically oriented studies over experimental and animal studies. The Journal would publish peer-reviewed original research papers, case reports, systematic reviews and meta-analysis. Editorial, Guest Editorial, Viewpoint and letter to the editor are solicited by the editorial board. Frequently Asked Questions (FAQ) regarding manuscript submission and processing at JNHRC.