Xing Zhou, Quan Lu, Qiu Wang, Wenxin Chu, Jianhao Huang, Jinming Yu, Yuechou Nong, Wensheng Lu
{"title":"盐酸地尔硫卓通过 BNIP3L/NIX 介导的丝裂噬方式保护心肌缺血/再灌注损伤","authors":"Xing Zhou, Quan Lu, Qiu Wang, Wenxin Chu, Jianhao Huang, Jinming Yu, Yuechou Nong, Wensheng Lu","doi":"10.2147/JIR.S493037","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mitochondrial calcium uptake-induced mitophagy may play an essential role in myocardial ischemia/reperfusion (MI/R) injury. Diltiazem hydrochloride (DIL), a traditional calcium channel blocker, can alleviate MI/R injury by blocking calcium overload. However, whether the protective mechanism of DIL involves mitophagy remains elusive. This study aimed to clarify the underlying molecular mechanism by which DIL ameliorates MI/R injury by downregulating mitophagy in vivo and in vitro.</p><p><strong>Methods: </strong>Thirty rats were randomized into three groups: the sham, MI/R, and MI/R+DIL (1 mg/kg) groups (n = 10/per group). MI/R injury was induced by ligating the left anterior descending (LAD) artery for 30 min followed by 60 min of reperfusion in vivo. H9C2 cells were selected to establish an oxygen-glucose deprivation/recovery (OGD/R) model to simulate MI/R injury in vitro. The potential mechanism by which DIL alleviates MI/R injury was analyzed based on tissue morphology, mitophagy-related gene transcription, and protein expression.</p><p><strong>Results: </strong>According to histological and immunohistochemical evaluations, DIL significantly alleviated myocardial damage in vivo. Moreover, DIL significantly increased cell viability, attenuated OGD/R-induced apoptosis, and inhibited mitochondrial autophagy in vitro. Mechanistically, DIL attenuated mitochondrial autophagy through the upregulation of dual-specificity protein phosphatase 1 (DUSP1) and the downregulation of c-Jun N-terminal kinase (JNK) and Bcl2 interacting protein 3-like (BNIP3L, also known as NIX) expression.</p><p><strong>Conclusion: </strong>Diltiazem hydrochloride protects against myocardial ischemia/reperfusion injury in a BNIP3L/NIX-mediated mitophagy manner in vivo and in vitro.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"17 ","pages":"8905-8919"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579144/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diltiazem Hydrochloride Protects Against Myocardial Ischemia/Reperfusion Injury in a BNIP3L/NIX-Mediated Mitophagy Manner.\",\"authors\":\"Xing Zhou, Quan Lu, Qiu Wang, Wenxin Chu, Jianhao Huang, Jinming Yu, Yuechou Nong, Wensheng Lu\",\"doi\":\"10.2147/JIR.S493037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mitochondrial calcium uptake-induced mitophagy may play an essential role in myocardial ischemia/reperfusion (MI/R) injury. Diltiazem hydrochloride (DIL), a traditional calcium channel blocker, can alleviate MI/R injury by blocking calcium overload. However, whether the protective mechanism of DIL involves mitophagy remains elusive. This study aimed to clarify the underlying molecular mechanism by which DIL ameliorates MI/R injury by downregulating mitophagy in vivo and in vitro.</p><p><strong>Methods: </strong>Thirty rats were randomized into three groups: the sham, MI/R, and MI/R+DIL (1 mg/kg) groups (n = 10/per group). MI/R injury was induced by ligating the left anterior descending (LAD) artery for 30 min followed by 60 min of reperfusion in vivo. H9C2 cells were selected to establish an oxygen-glucose deprivation/recovery (OGD/R) model to simulate MI/R injury in vitro. The potential mechanism by which DIL alleviates MI/R injury was analyzed based on tissue morphology, mitophagy-related gene transcription, and protein expression.</p><p><strong>Results: </strong>According to histological and immunohistochemical evaluations, DIL significantly alleviated myocardial damage in vivo. Moreover, DIL significantly increased cell viability, attenuated OGD/R-induced apoptosis, and inhibited mitochondrial autophagy in vitro. Mechanistically, DIL attenuated mitochondrial autophagy through the upregulation of dual-specificity protein phosphatase 1 (DUSP1) and the downregulation of c-Jun N-terminal kinase (JNK) and Bcl2 interacting protein 3-like (BNIP3L, also known as NIX) expression.</p><p><strong>Conclusion: </strong>Diltiazem hydrochloride protects against myocardial ischemia/reperfusion injury in a BNIP3L/NIX-mediated mitophagy manner in vivo and in vitro.</p>\",\"PeriodicalId\":16107,\"journal\":{\"name\":\"Journal of Inflammation Research\",\"volume\":\"17 \",\"pages\":\"8905-8919\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579144/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inflammation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/JIR.S493037\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S493037","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Diltiazem Hydrochloride Protects Against Myocardial Ischemia/Reperfusion Injury in a BNIP3L/NIX-Mediated Mitophagy Manner.
Background: Mitochondrial calcium uptake-induced mitophagy may play an essential role in myocardial ischemia/reperfusion (MI/R) injury. Diltiazem hydrochloride (DIL), a traditional calcium channel blocker, can alleviate MI/R injury by blocking calcium overload. However, whether the protective mechanism of DIL involves mitophagy remains elusive. This study aimed to clarify the underlying molecular mechanism by which DIL ameliorates MI/R injury by downregulating mitophagy in vivo and in vitro.
Methods: Thirty rats were randomized into three groups: the sham, MI/R, and MI/R+DIL (1 mg/kg) groups (n = 10/per group). MI/R injury was induced by ligating the left anterior descending (LAD) artery for 30 min followed by 60 min of reperfusion in vivo. H9C2 cells were selected to establish an oxygen-glucose deprivation/recovery (OGD/R) model to simulate MI/R injury in vitro. The potential mechanism by which DIL alleviates MI/R injury was analyzed based on tissue morphology, mitophagy-related gene transcription, and protein expression.
Results: According to histological and immunohistochemical evaluations, DIL significantly alleviated myocardial damage in vivo. Moreover, DIL significantly increased cell viability, attenuated OGD/R-induced apoptosis, and inhibited mitochondrial autophagy in vitro. Mechanistically, DIL attenuated mitochondrial autophagy through the upregulation of dual-specificity protein phosphatase 1 (DUSP1) and the downregulation of c-Jun N-terminal kinase (JNK) and Bcl2 interacting protein 3-like (BNIP3L, also known as NIX) expression.
Conclusion: Diltiazem hydrochloride protects against myocardial ischemia/reperfusion injury in a BNIP3L/NIX-mediated mitophagy manner in vivo and in vitro.
期刊介绍:
An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.