髋关节形状的遗传结构及其在髋关节骨关节炎和骨折发展中的作用。

IF 3.1 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Benjamin G Faber, Monika Frysz, Jaiyi Zheng, Huandong Lin, Kaitlyn A Flynn, Raja Ebsim, Fiona R Saunders, Rhona Beynon, Jennifer S Gregory, Richard M Aspden, Nicholas C Harvey, Claudia Lindner, Timothy Cootes, David M Evans, George Davey Smith, Xin Gao, Sijia Wang, John P Kemp, Jonathan H Tobias
{"title":"髋关节形状的遗传结构及其在髋关节骨关节炎和骨折发展中的作用。","authors":"Benjamin G Faber, Monika Frysz, Jaiyi Zheng, Huandong Lin, Kaitlyn A Flynn, Raja Ebsim, Fiona R Saunders, Rhona Beynon, Jennifer S Gregory, Richard M Aspden, Nicholas C Harvey, Claudia Lindner, Timothy Cootes, David M Evans, George Davey Smith, Xin Gao, Sijia Wang, John P Kemp, Jonathan H Tobias","doi":"10.1093/hmg/ddae169","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Hip shape is thought to be an important causal risk factor for hip osteoarthritis and fracture. We aimed to identify genetic determinants of hip shape and use these to assess causal relationships with hip osteoarthritis.</p><p><strong>Methods: </strong>Statistical hip shape modelling was used to derive 10 hip shape modes (HSMs) from DXA images in UK Biobank and Shanghai Changfeng cohorts (ntotal = 43 485). Genome-wide association study meta-analyses were conducted for each HSM. Two-sample Mendelian randomisation (MR) was used to estimate causal effects between HSM and hip osteoarthritis using hip fracture as a positive control.</p><p><strong>Results: </strong>Analysis of the first 10 HSMs identified 203 independent association signals (P < 5 × 10-9). Hip shape SNPs were also associated (P < 2.5 × 10-4) with hip osteoarthritis (n = 26) and hip fracture (n = 4). Fine mapping implicated SMAD3 and PLEC as candidate genes that may be involved in the development of hip shape and hip osteoarthritis. MR analyses suggested there was no causal effect between any HSM and hip osteoarthritis, however there was evidence that HSM2 (more obtuse neck-shaft angle) and HSM4 (wider femoral neck) have a causal effect on hip fracture (ORIVW method 1.27 [95% CI 1.12-1.44], P = 1.79 × 10-4 and ORIVW 0.74 [0.65-0.84], P = 7.60 × 10-6 respectively).</p><p><strong>Conclusions: </strong>We report the largest hip shape GWAS meta-analysis that identifies hundreds of novel loci, some of which are also associated with hip osteoarthritis and hip fracture. MR analyses suggest hip shape may not cause hip osteoarthritis but is implicated in hip fractures. Consequently, interventions targeting hip shape in older adults to prevent hip osteoarthritis may prove ineffective.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The genetic architecture of hip shape and its role in the development of hip osteoarthritis and fracture.\",\"authors\":\"Benjamin G Faber, Monika Frysz, Jaiyi Zheng, Huandong Lin, Kaitlyn A Flynn, Raja Ebsim, Fiona R Saunders, Rhona Beynon, Jennifer S Gregory, Richard M Aspden, Nicholas C Harvey, Claudia Lindner, Timothy Cootes, David M Evans, George Davey Smith, Xin Gao, Sijia Wang, John P Kemp, Jonathan H Tobias\",\"doi\":\"10.1093/hmg/ddae169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Hip shape is thought to be an important causal risk factor for hip osteoarthritis and fracture. We aimed to identify genetic determinants of hip shape and use these to assess causal relationships with hip osteoarthritis.</p><p><strong>Methods: </strong>Statistical hip shape modelling was used to derive 10 hip shape modes (HSMs) from DXA images in UK Biobank and Shanghai Changfeng cohorts (ntotal = 43 485). Genome-wide association study meta-analyses were conducted for each HSM. Two-sample Mendelian randomisation (MR) was used to estimate causal effects between HSM and hip osteoarthritis using hip fracture as a positive control.</p><p><strong>Results: </strong>Analysis of the first 10 HSMs identified 203 independent association signals (P < 5 × 10-9). Hip shape SNPs were also associated (P < 2.5 × 10-4) with hip osteoarthritis (n = 26) and hip fracture (n = 4). Fine mapping implicated SMAD3 and PLEC as candidate genes that may be involved in the development of hip shape and hip osteoarthritis. MR analyses suggested there was no causal effect between any HSM and hip osteoarthritis, however there was evidence that HSM2 (more obtuse neck-shaft angle) and HSM4 (wider femoral neck) have a causal effect on hip fracture (ORIVW method 1.27 [95% CI 1.12-1.44], P = 1.79 × 10-4 and ORIVW 0.74 [0.65-0.84], P = 7.60 × 10-6 respectively).</p><p><strong>Conclusions: </strong>We report the largest hip shape GWAS meta-analysis that identifies hundreds of novel loci, some of which are also associated with hip osteoarthritis and hip fracture. MR analyses suggest hip shape may not cause hip osteoarthritis but is implicated in hip fractures. Consequently, interventions targeting hip shape in older adults to prevent hip osteoarthritis may prove ineffective.</p>\",\"PeriodicalId\":13070,\"journal\":{\"name\":\"Human molecular genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human molecular genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/hmg/ddae169\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae169","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:髋关节形状被认为是髋关节骨关节炎和骨折的一个重要因果风险因素。我们旨在确定髋关节形状的遗传决定因素,并利用这些因素评估与髋关节骨性关节炎的因果关系:方法:从英国生物库和上海长风队列(总计 43 485 人)的 DXA 图像中得出 10 种髋关节形状模式(HSM),并使用统计髋关节形状建模。针对每种 HSM 进行了全基因组关联研究荟萃分析。以髋部骨折为阳性对照,采用双样本孟德尔随机法(MR)估计 HSM 与髋部骨关节炎之间的因果效应:结果:对前 10 个 HSMs 的分析发现了 203 个独立的关联信号(P我们报告了规模最大的髋关节形状 GWAS meta 分析,发现了数百个新的基因位点,其中一些还与髋关节骨关节炎和髋部骨折有关。磁共振分析表明,髋关节形状可能不会导致髋关节骨关节炎,但与髋部骨折有关。因此,针对老年人髋关节形状以预防髋关节骨性关节炎的干预措施可能被证明是无效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The genetic architecture of hip shape and its role in the development of hip osteoarthritis and fracture.

Objectives: Hip shape is thought to be an important causal risk factor for hip osteoarthritis and fracture. We aimed to identify genetic determinants of hip shape and use these to assess causal relationships with hip osteoarthritis.

Methods: Statistical hip shape modelling was used to derive 10 hip shape modes (HSMs) from DXA images in UK Biobank and Shanghai Changfeng cohorts (ntotal = 43 485). Genome-wide association study meta-analyses were conducted for each HSM. Two-sample Mendelian randomisation (MR) was used to estimate causal effects between HSM and hip osteoarthritis using hip fracture as a positive control.

Results: Analysis of the first 10 HSMs identified 203 independent association signals (P < 5 × 10-9). Hip shape SNPs were also associated (P < 2.5 × 10-4) with hip osteoarthritis (n = 26) and hip fracture (n = 4). Fine mapping implicated SMAD3 and PLEC as candidate genes that may be involved in the development of hip shape and hip osteoarthritis. MR analyses suggested there was no causal effect between any HSM and hip osteoarthritis, however there was evidence that HSM2 (more obtuse neck-shaft angle) and HSM4 (wider femoral neck) have a causal effect on hip fracture (ORIVW method 1.27 [95% CI 1.12-1.44], P = 1.79 × 10-4 and ORIVW 0.74 [0.65-0.84], P = 7.60 × 10-6 respectively).

Conclusions: We report the largest hip shape GWAS meta-analysis that identifies hundreds of novel loci, some of which are also associated with hip osteoarthritis and hip fracture. MR analyses suggest hip shape may not cause hip osteoarthritis but is implicated in hip fractures. Consequently, interventions targeting hip shape in older adults to prevent hip osteoarthritis may prove ineffective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信