Katja R Kasimatis, John H Willis, Christine A Sedore, Patrick C Phillips
{"title":"通过实验性进化揭示了草履虫在两个进化时间尺度上的转录组性冲突。","authors":"Katja R Kasimatis, John H Willis, Christine A Sedore, Patrick C Phillips","doi":"10.1093/gbe/evae256","DOIUrl":null,"url":null,"abstract":"<p><p>Sex-specific regulation of gene expression is the most plausible way for generating sexually differentiated phenotypes from an essentially shared genome. However, since genetic material is shared, sex-specific selection in one sex can have an indirect response in the other sex. From a gene expression perspective, this tethered response can move one sex away from their wild-type expression state and potentially impact many gene regulatory networks. Here, using experimental evolution in the model nematode Caenorhabditis elegans, we explore the coupling of direct sexual selection on males with the transcriptomic response in males and females over microevolutionary timescales to uncover the extent to which postinsemination reproductive traits share a genetic basis between the sexes. We find that differential gene expression evolved in a sex-specific manner in males, while in females, indirect selection causes an evolved response. Almost all differentially expressed genes were downregulated in both evolved males and females. Moreover, 97% of significantly differentially expressed genes in males and 69% of significantly differentially expressed genes in females have wild-type female-biased expression profile. Changes in gene expression profiles were likely driven through trans-acting pathways that are shared between the sexes. We found no evidence that the core dosage compensation machinery was impacted by experimental evolution. Together, these data suggest a defeminization of the male transcriptome and masculinization of the female transcriptome driven by direct selection on male sperm competitive ability. Our results indicate that on short evolutionary timescales, sexual selection can generate putative sexual conflict in expression space.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687035/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic Sexual Conflict at Two Evolutionary Timescales Revealed by Experimental Evolution in Caenorhabditis elegans.\",\"authors\":\"Katja R Kasimatis, John H Willis, Christine A Sedore, Patrick C Phillips\",\"doi\":\"10.1093/gbe/evae256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sex-specific regulation of gene expression is the most plausible way for generating sexually differentiated phenotypes from an essentially shared genome. However, since genetic material is shared, sex-specific selection in one sex can have an indirect response in the other sex. From a gene expression perspective, this tethered response can move one sex away from their wild-type expression state and potentially impact many gene regulatory networks. Here, using experimental evolution in the model nematode Caenorhabditis elegans, we explore the coupling of direct sexual selection on males with the transcriptomic response in males and females over microevolutionary timescales to uncover the extent to which postinsemination reproductive traits share a genetic basis between the sexes. We find that differential gene expression evolved in a sex-specific manner in males, while in females, indirect selection causes an evolved response. Almost all differentially expressed genes were downregulated in both evolved males and females. Moreover, 97% of significantly differentially expressed genes in males and 69% of significantly differentially expressed genes in females have wild-type female-biased expression profile. Changes in gene expression profiles were likely driven through trans-acting pathways that are shared between the sexes. We found no evidence that the core dosage compensation machinery was impacted by experimental evolution. Together, these data suggest a defeminization of the male transcriptome and masculinization of the female transcriptome driven by direct selection on male sperm competitive ability. Our results indicate that on short evolutionary timescales, sexual selection can generate putative sexual conflict in expression space.</p>\",\"PeriodicalId\":12779,\"journal\":{\"name\":\"Genome Biology and Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687035/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gbe/evae256\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae256","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Transcriptomic Sexual Conflict at Two Evolutionary Timescales Revealed by Experimental Evolution in Caenorhabditis elegans.
Sex-specific regulation of gene expression is the most plausible way for generating sexually differentiated phenotypes from an essentially shared genome. However, since genetic material is shared, sex-specific selection in one sex can have an indirect response in the other sex. From a gene expression perspective, this tethered response can move one sex away from their wild-type expression state and potentially impact many gene regulatory networks. Here, using experimental evolution in the model nematode Caenorhabditis elegans, we explore the coupling of direct sexual selection on males with the transcriptomic response in males and females over microevolutionary timescales to uncover the extent to which postinsemination reproductive traits share a genetic basis between the sexes. We find that differential gene expression evolved in a sex-specific manner in males, while in females, indirect selection causes an evolved response. Almost all differentially expressed genes were downregulated in both evolved males and females. Moreover, 97% of significantly differentially expressed genes in males and 69% of significantly differentially expressed genes in females have wild-type female-biased expression profile. Changes in gene expression profiles were likely driven through trans-acting pathways that are shared between the sexes. We found no evidence that the core dosage compensation machinery was impacted by experimental evolution. Together, these data suggest a defeminization of the male transcriptome and masculinization of the female transcriptome driven by direct selection on male sperm competitive ability. Our results indicate that on short evolutionary timescales, sexual selection can generate putative sexual conflict in expression space.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.