TIdeS:真核生物转录组中开放阅读框准确识别和分类的综合框架。

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY
Xyrus X Maurer-Alcalá, Eunsoo Kim
{"title":"TIdeS:真核生物转录组中开放阅读框准确识别和分类的综合框架。","authors":"Xyrus X Maurer-Alcalá, Eunsoo Kim","doi":"10.1093/gbe/evae252","DOIUrl":null,"url":null,"abstract":"<p><p>Studying fundamental aspects of eukaryotic biology through genetic information can face numerous challenges, including contamination and intricate biotic interactions, which are particularly pronounced when working with uncultured eukaryotes. However, existing tools for predicting open reading frames (ORFs) from transcriptomes are limited in these scenarios. Here we introduce Transcript Identification and Selection (TIdeS), a framework designed to address these nontrivial challenges associated with current 'omics approaches. Using transcriptomes from 32 taxa, representing the breadth of eukaryotic diversity, TIdeS outperforms most conventional ORF-prediction methods (i.e. TransDecoder), identifying a greater proportion of complete and in-frame ORFs. Additionally, TIdeS accurately classifies ORFs using minimal input data, even in the presence of \"heavy contamination\". This built-in flexibility extends to previously unexplored biological interactions, offering a robust single-stop solution for precise ORF predictions and subsequent decontamination. Beyond applications in phylogenomic-based studies, TIdeS provides a robust means to explore biotic interactions in eukaryotes (e.g. host-symbiont, prey-predator) and for reproducible dataset curation from transcriptomes and genomes.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631190/pdf/","citationCount":"0","resultStr":"{\"title\":\"TIdeS: A Comprehensive Framework for Accurate Open Reading Frame Identification and Classification in Eukaryotic Transcriptomes.\",\"authors\":\"Xyrus X Maurer-Alcalá, Eunsoo Kim\",\"doi\":\"10.1093/gbe/evae252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studying fundamental aspects of eukaryotic biology through genetic information can face numerous challenges, including contamination and intricate biotic interactions, which are particularly pronounced when working with uncultured eukaryotes. However, existing tools for predicting open reading frames (ORFs) from transcriptomes are limited in these scenarios. Here we introduce Transcript Identification and Selection (TIdeS), a framework designed to address these nontrivial challenges associated with current 'omics approaches. Using transcriptomes from 32 taxa, representing the breadth of eukaryotic diversity, TIdeS outperforms most conventional ORF-prediction methods (i.e. TransDecoder), identifying a greater proportion of complete and in-frame ORFs. Additionally, TIdeS accurately classifies ORFs using minimal input data, even in the presence of \\\"heavy contamination\\\". This built-in flexibility extends to previously unexplored biological interactions, offering a robust single-stop solution for precise ORF predictions and subsequent decontamination. Beyond applications in phylogenomic-based studies, TIdeS provides a robust means to explore biotic interactions in eukaryotes (e.g. host-symbiont, prey-predator) and for reproducible dataset curation from transcriptomes and genomes.</p>\",\"PeriodicalId\":12779,\"journal\":{\"name\":\"Genome Biology and Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631190/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gbe/evae252\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae252","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过遗传信息研究真核生物的基本方面可能面临许多挑战,包括污染和错综复杂的生物相互作用,这在研究未培养的真核生物时尤为明显。然而,现有的从转录组预测开放阅读框(ORF)的工具在这些情况下非常有限。在这里,我们介绍转录本识别与选择(TIdeS),这是一个旨在解决与当前 "omics "方法相关的非难点的框架。利用代表真核生物多样性广度的 32 个分类群的转录本组,TIdeS 的表现优于大多数传统的 ORF 预测方法(即 TransDecoder),能识别出更大比例的完整和框架内 ORF。此外,即使在 "严重污染 "的情况下,TIdeS 也能使用最少的输入数据对 ORF 进行准确分类。这种内置灵活性扩展到了以前未探索的生物相互作用,为精确预测 ORF 和后续净化提供了强大的一站式解决方案。除了在基于系统发生组的研究中的应用外,TIdeS 还为探索真核生物中的生物相互作用(如宿主-共生体、猎物-捕食者)以及从转录组和基因组中进行可重复的数据集整理提供了强大的手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TIdeS: A Comprehensive Framework for Accurate Open Reading Frame Identification and Classification in Eukaryotic Transcriptomes.

Studying fundamental aspects of eukaryotic biology through genetic information can face numerous challenges, including contamination and intricate biotic interactions, which are particularly pronounced when working with uncultured eukaryotes. However, existing tools for predicting open reading frames (ORFs) from transcriptomes are limited in these scenarios. Here we introduce Transcript Identification and Selection (TIdeS), a framework designed to address these nontrivial challenges associated with current 'omics approaches. Using transcriptomes from 32 taxa, representing the breadth of eukaryotic diversity, TIdeS outperforms most conventional ORF-prediction methods (i.e. TransDecoder), identifying a greater proportion of complete and in-frame ORFs. Additionally, TIdeS accurately classifies ORFs using minimal input data, even in the presence of "heavy contamination". This built-in flexibility extends to previously unexplored biological interactions, offering a robust single-stop solution for precise ORF predictions and subsequent decontamination. Beyond applications in phylogenomic-based studies, TIdeS provides a robust means to explore biotic interactions in eukaryotes (e.g. host-symbiont, prey-predator) and for reproducible dataset curation from transcriptomes and genomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信