Gabriela Zimmermann Prado Rodrigues, Mariana Finkler, Thainá Garbino Dos Santos, Juliana Machado Kayser, Diego Del Duca Lima, Jorge Henrique Burghausen, Diogo Losch de Oliveira, Ana Luiza Ziulkoski, Günther Gehlen
{"title":"斑马鱼与铁和铝的慢性接触:评估行为、组织病理学和遗传毒性变化的逆转和世代交替。","authors":"Gabriela Zimmermann Prado Rodrigues, Mariana Finkler, Thainá Garbino Dos Santos, Juliana Machado Kayser, Diego Del Duca Lima, Jorge Henrique Burghausen, Diogo Losch de Oliveira, Ana Luiza Ziulkoski, Günther Gehlen","doi":"10.1002/tox.24443","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to report the effects of chronic exposure of zebrafish exposed to environmentally relevant concentrations of 0.5, 2.4, and 5.0 mg L<sup>-1</sup> iron (Fe) and 0.2, 0.4, and 2.0 mg L<sup>-1</sup> aluminum (Al). We also evaluated the reversal and generational transposition (F1) of possible histopathological, behavioral, and genotoxic changes in the species. Locomotion changes that may have been caused by the increase in the number of apoptotic cells and in the telencephalic mitochondrial activity were observed especially after the 30 days exposure to Al and persisted after recovery (30 days). We also observed histopathological changes, such as an increase in the number of intestinal goblet cells, even after the recovery period in these animals. Our results also showed that the Fe concentrations used were insufficient to cause genotoxicity, behavioral and intestinal epithelium changes. The adult offspring (F1) of animals exposed to Al showed changes in locomotion and in the amount of goblet cells, demonstrating that even in low concentrations this pollutant can harm subsequent generations in the aquatic biota. Animals demonstrate, in general, greater tolerance to Fe which may be related to the physiological demand of this metal by the body. Even so, all concentrations of both metals that caused some change in the species represent Brazilian environmental occurrences or Brazilian legislation. It highlights the need for updating the guidelines and constant monitoring of aquatic environments, since even in the face of a hypothetical decontamination of the environment, some changes could persist and affect different trophic levels.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chronic Exposure of Zebrafish to Iron and Aluminum: Evaluation of Reversal and Generational Transposition of Behavioral, Histopathological, and Genotoxic Changes.\",\"authors\":\"Gabriela Zimmermann Prado Rodrigues, Mariana Finkler, Thainá Garbino Dos Santos, Juliana Machado Kayser, Diego Del Duca Lima, Jorge Henrique Burghausen, Diogo Losch de Oliveira, Ana Luiza Ziulkoski, Günther Gehlen\",\"doi\":\"10.1002/tox.24443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to report the effects of chronic exposure of zebrafish exposed to environmentally relevant concentrations of 0.5, 2.4, and 5.0 mg L<sup>-1</sup> iron (Fe) and 0.2, 0.4, and 2.0 mg L<sup>-1</sup> aluminum (Al). We also evaluated the reversal and generational transposition (F1) of possible histopathological, behavioral, and genotoxic changes in the species. Locomotion changes that may have been caused by the increase in the number of apoptotic cells and in the telencephalic mitochondrial activity were observed especially after the 30 days exposure to Al and persisted after recovery (30 days). We also observed histopathological changes, such as an increase in the number of intestinal goblet cells, even after the recovery period in these animals. Our results also showed that the Fe concentrations used were insufficient to cause genotoxicity, behavioral and intestinal epithelium changes. The adult offspring (F1) of animals exposed to Al showed changes in locomotion and in the amount of goblet cells, demonstrating that even in low concentrations this pollutant can harm subsequent generations in the aquatic biota. Animals demonstrate, in general, greater tolerance to Fe which may be related to the physiological demand of this metal by the body. Even so, all concentrations of both metals that caused some change in the species represent Brazilian environmental occurrences or Brazilian legislation. It highlights the need for updating the guidelines and constant monitoring of aquatic environments, since even in the face of a hypothetical decontamination of the environment, some changes could persist and affect different trophic levels.</p>\",\"PeriodicalId\":11756,\"journal\":{\"name\":\"Environmental Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/tox.24443\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/tox.24443","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Chronic Exposure of Zebrafish to Iron and Aluminum: Evaluation of Reversal and Generational Transposition of Behavioral, Histopathological, and Genotoxic Changes.
This study aimed to report the effects of chronic exposure of zebrafish exposed to environmentally relevant concentrations of 0.5, 2.4, and 5.0 mg L-1 iron (Fe) and 0.2, 0.4, and 2.0 mg L-1 aluminum (Al). We also evaluated the reversal and generational transposition (F1) of possible histopathological, behavioral, and genotoxic changes in the species. Locomotion changes that may have been caused by the increase in the number of apoptotic cells and in the telencephalic mitochondrial activity were observed especially after the 30 days exposure to Al and persisted after recovery (30 days). We also observed histopathological changes, such as an increase in the number of intestinal goblet cells, even after the recovery period in these animals. Our results also showed that the Fe concentrations used were insufficient to cause genotoxicity, behavioral and intestinal epithelium changes. The adult offspring (F1) of animals exposed to Al showed changes in locomotion and in the amount of goblet cells, demonstrating that even in low concentrations this pollutant can harm subsequent generations in the aquatic biota. Animals demonstrate, in general, greater tolerance to Fe which may be related to the physiological demand of this metal by the body. Even so, all concentrations of both metals that caused some change in the species represent Brazilian environmental occurrences or Brazilian legislation. It highlights the need for updating the guidelines and constant monitoring of aquatic environments, since even in the face of a hypothetical decontamination of the environment, some changes could persist and affect different trophic levels.
期刊介绍:
The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are:
Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration;
Natural toxins and their impacts;
Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation;
Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard;
Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.