Haimiao Lin, Baojie Guo, Zhongwen Li, Chenxin Wang, Wenyu Wu, Zhaoxiang Lu, Liu Wang, Jun Wu, Jinming Li, Jie Hao, Yun Feng
{"title":"胶原支架上的人类胚胎干细胞衍生免疫和基质调节细胞可有效治疗大鼠角膜碱烧伤。","authors":"Haimiao Lin, Baojie Guo, Zhongwen Li, Chenxin Wang, Wenyu Wu, Zhaoxiang Lu, Liu Wang, Jun Wu, Jinming Li, Jie Hao, Yun Feng","doi":"10.1016/j.exer.2024.110164","DOIUrl":null,"url":null,"abstract":"<p><p>Corneal alkali burns (CAB) are a severe form of ocular injury that often leads to significant vision loss, with limited effective treatment options available beyond corneal transplantation. Immunity and matrix-regulatory cells (IMRCs) have emerged as a promising alternative due to their ability to modulate immune responses and support tissue repair. This study investigates the efficacy of IMRCs on collagen scaffolds (IMRCs-col) for treating CAB in a rat model. We developed a novel treatment combining IMRCs with a collagen scaffold to align with the ocular surface structure. In vitro analyses showed that IMRCs-col significantly upregulated the expression of immune regulatory molecules, including IL-1RA and SCF. Additionally, IMRCs-col effectively inhibited the production of pro-inflammatory cytokines (IL-8 and Gro-a/CXCL1) while promoting pro-regenerative cytokines (bFGF, HGF, and PDGF). In an animal model of CAB, IMRCs-col transplantation demonstrated substantial efficacy in restoring corneal opacity and reducing neovascularization. Histological examination revealed reduced inflammation and improved corneal tissue regeneration compared to untreated CAB. Enhanced activation of pathways associated with anti-inflammatory responses and tissue repair was observed at days 3, 7, and 21 post-treatment.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110164"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human embryonic stem cell-derived immunity-and-matrix-regulatory cells on collagen scaffold effectively treat rat corneal alkali burn.\",\"authors\":\"Haimiao Lin, Baojie Guo, Zhongwen Li, Chenxin Wang, Wenyu Wu, Zhaoxiang Lu, Liu Wang, Jun Wu, Jinming Li, Jie Hao, Yun Feng\",\"doi\":\"10.1016/j.exer.2024.110164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Corneal alkali burns (CAB) are a severe form of ocular injury that often leads to significant vision loss, with limited effective treatment options available beyond corneal transplantation. Immunity and matrix-regulatory cells (IMRCs) have emerged as a promising alternative due to their ability to modulate immune responses and support tissue repair. This study investigates the efficacy of IMRCs on collagen scaffolds (IMRCs-col) for treating CAB in a rat model. We developed a novel treatment combining IMRCs with a collagen scaffold to align with the ocular surface structure. In vitro analyses showed that IMRCs-col significantly upregulated the expression of immune regulatory molecules, including IL-1RA and SCF. Additionally, IMRCs-col effectively inhibited the production of pro-inflammatory cytokines (IL-8 and Gro-a/CXCL1) while promoting pro-regenerative cytokines (bFGF, HGF, and PDGF). In an animal model of CAB, IMRCs-col transplantation demonstrated substantial efficacy in restoring corneal opacity and reducing neovascularization. Histological examination revealed reduced inflammation and improved corneal tissue regeneration compared to untreated CAB. Enhanced activation of pathways associated with anti-inflammatory responses and tissue repair was observed at days 3, 7, and 21 post-treatment.</p>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\" \",\"pages\":\"110164\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.exer.2024.110164\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2024.110164","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Human embryonic stem cell-derived immunity-and-matrix-regulatory cells on collagen scaffold effectively treat rat corneal alkali burn.
Corneal alkali burns (CAB) are a severe form of ocular injury that often leads to significant vision loss, with limited effective treatment options available beyond corneal transplantation. Immunity and matrix-regulatory cells (IMRCs) have emerged as a promising alternative due to their ability to modulate immune responses and support tissue repair. This study investigates the efficacy of IMRCs on collagen scaffolds (IMRCs-col) for treating CAB in a rat model. We developed a novel treatment combining IMRCs with a collagen scaffold to align with the ocular surface structure. In vitro analyses showed that IMRCs-col significantly upregulated the expression of immune regulatory molecules, including IL-1RA and SCF. Additionally, IMRCs-col effectively inhibited the production of pro-inflammatory cytokines (IL-8 and Gro-a/CXCL1) while promoting pro-regenerative cytokines (bFGF, HGF, and PDGF). In an animal model of CAB, IMRCs-col transplantation demonstrated substantial efficacy in restoring corneal opacity and reducing neovascularization. Histological examination revealed reduced inflammation and improved corneal tissue regeneration compared to untreated CAB. Enhanced activation of pathways associated with anti-inflammatory responses and tissue repair was observed at days 3, 7, and 21 post-treatment.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.