Raisa Bailon-Zambrano, Margaret K Keating, Emily C Sales, Abigail R Nichols, Grace E Gustafson, Colette A Hopkins, Katrinka M Kocha, Peng Huang, Lindsey Barske, James T Nichols
{"title":"硬骨是背鳍和臀鳍骨骼的来源,中鳍的发育需要硬骨的扩张。","authors":"Raisa Bailon-Zambrano, Margaret K Keating, Emily C Sales, Abigail R Nichols, Grace E Gustafson, Colette A Hopkins, Katrinka M Kocha, Peng Huang, Lindsey Barske, James T Nichols","doi":"10.1242/dev.203025","DOIUrl":null,"url":null,"abstract":"<p><p>Paired locomotion appendages are hypothesized to have redeployed the developmental program of median appendages, such as the dorsal and anal fins. Compared with paired fins, and limbs, median appendages remain surprisingly understudied. Here, we report that a dominant zebrafish mutant, smoothback(smb), fails to develop a dorsal fin. Moreover, the anal fin is reduced along the antero-posterior axis, and spine defects develop. Mechanistically, smb is caused by an insertion of a sox10:Gal4VP16transgenic construct into a non-coding region. The first step in fin, and limb, induction is aggregation of undifferentiated mesenchyme at the appendage development site. In smb, this dorsal fin mesenchyme is absent. Lineage tracing demonstrates the previously unknown developmental origin of the mesenchyme, the sclerotome, which also gives rise to the spine. Strikingly, we find that there is significantly less sclerotome in smb compared to wild type. Our results give insight into the origin and modularity of understudied median fins, which have changed position, number, size, and even disappeared across evolutionary time.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The sclerotome is the source of the dorsal and anal fin skeleton and its expansion is required for median fin development.\",\"authors\":\"Raisa Bailon-Zambrano, Margaret K Keating, Emily C Sales, Abigail R Nichols, Grace E Gustafson, Colette A Hopkins, Katrinka M Kocha, Peng Huang, Lindsey Barske, James T Nichols\",\"doi\":\"10.1242/dev.203025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Paired locomotion appendages are hypothesized to have redeployed the developmental program of median appendages, such as the dorsal and anal fins. Compared with paired fins, and limbs, median appendages remain surprisingly understudied. Here, we report that a dominant zebrafish mutant, smoothback(smb), fails to develop a dorsal fin. Moreover, the anal fin is reduced along the antero-posterior axis, and spine defects develop. Mechanistically, smb is caused by an insertion of a sox10:Gal4VP16transgenic construct into a non-coding region. The first step in fin, and limb, induction is aggregation of undifferentiated mesenchyme at the appendage development site. In smb, this dorsal fin mesenchyme is absent. Lineage tracing demonstrates the previously unknown developmental origin of the mesenchyme, the sclerotome, which also gives rise to the spine. Strikingly, we find that there is significantly less sclerotome in smb compared to wild type. Our results give insight into the origin and modularity of understudied median fins, which have changed position, number, size, and even disappeared across evolutionary time.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.203025\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.203025","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
The sclerotome is the source of the dorsal and anal fin skeleton and its expansion is required for median fin development.
Paired locomotion appendages are hypothesized to have redeployed the developmental program of median appendages, such as the dorsal and anal fins. Compared with paired fins, and limbs, median appendages remain surprisingly understudied. Here, we report that a dominant zebrafish mutant, smoothback(smb), fails to develop a dorsal fin. Moreover, the anal fin is reduced along the antero-posterior axis, and spine defects develop. Mechanistically, smb is caused by an insertion of a sox10:Gal4VP16transgenic construct into a non-coding region. The first step in fin, and limb, induction is aggregation of undifferentiated mesenchyme at the appendage development site. In smb, this dorsal fin mesenchyme is absent. Lineage tracing demonstrates the previously unknown developmental origin of the mesenchyme, the sclerotome, which also gives rise to the spine. Strikingly, we find that there is significantly less sclerotome in smb compared to wild type. Our results give insight into the origin and modularity of understudied median fins, which have changed position, number, size, and even disappeared across evolutionary time.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.