Vasilisa V Krasitskaya, Kristina A Drandrova, Anna V Tyumentseva, Irina G Vazhenina, Anna V Lukyanenko, Sergey V Stolyar, Ludmila A Frank
{"title":"作为尿液外泌体分离亲和材料的康加维林 A 激活磁性纳米颗粒","authors":"Vasilisa V Krasitskaya, Kristina A Drandrova, Anna V Tyumentseva, Irina G Vazhenina, Anna V Lukyanenko, Sergey V Stolyar, Ludmila A Frank","doi":"10.1002/bab.2696","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes are a type of membrane vesicle secreted into the extracellular medium by most cell types. They have a great potential for clinical practice as noninvasive biomarkers for diagnosis of various diseases, prognosis, and monitoring of therapy, which stimulates the development of simple methods for isolating exosomes from biological fluids. A novel affine material based on aminosilanized superparamagnetic core‒shell nanoparticles for fast isolation of urinary exosomes is reported. Iron oxide nanoparticles coated with amino organosilane have been synthesized. The structural and magnetic characteristics of the resulting nanoparticles have been studied by transmission electron microscopy and ferromagnetic resonance. The surface of the synthesized nanoparticles has been chemically functionalized with lectin (concanavalin A), and the efficiency of the obtained material as a sorbent for affine exosome isolation from human urine has been demonstrated. A highly purified fraction of exosomes 90-200 nm in size has been obtained. The exosomal nature of the isolated vesicles has been confirmed by bioluminescent solid-phase microassay of tetrasporine receptor markers. The presence of exosomal miR-21 in the isolated human urine exosome samples has been established.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concanavalin A-activated magnetic nanoparticles as an affine material for urinary exosome isolation.\",\"authors\":\"Vasilisa V Krasitskaya, Kristina A Drandrova, Anna V Tyumentseva, Irina G Vazhenina, Anna V Lukyanenko, Sergey V Stolyar, Ludmila A Frank\",\"doi\":\"10.1002/bab.2696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exosomes are a type of membrane vesicle secreted into the extracellular medium by most cell types. They have a great potential for clinical practice as noninvasive biomarkers for diagnosis of various diseases, prognosis, and monitoring of therapy, which stimulates the development of simple methods for isolating exosomes from biological fluids. A novel affine material based on aminosilanized superparamagnetic core‒shell nanoparticles for fast isolation of urinary exosomes is reported. Iron oxide nanoparticles coated with amino organosilane have been synthesized. The structural and magnetic characteristics of the resulting nanoparticles have been studied by transmission electron microscopy and ferromagnetic resonance. The surface of the synthesized nanoparticles has been chemically functionalized with lectin (concanavalin A), and the efficiency of the obtained material as a sorbent for affine exosome isolation from human urine has been demonstrated. A highly purified fraction of exosomes 90-200 nm in size has been obtained. The exosomal nature of the isolated vesicles has been confirmed by bioluminescent solid-phase microassay of tetrasporine receptor markers. The presence of exosomal miR-21 in the isolated human urine exosome samples has been established.</p>\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.2696\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2696","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Concanavalin A-activated magnetic nanoparticles as an affine material for urinary exosome isolation.
Exosomes are a type of membrane vesicle secreted into the extracellular medium by most cell types. They have a great potential for clinical practice as noninvasive biomarkers for diagnosis of various diseases, prognosis, and monitoring of therapy, which stimulates the development of simple methods for isolating exosomes from biological fluids. A novel affine material based on aminosilanized superparamagnetic core‒shell nanoparticles for fast isolation of urinary exosomes is reported. Iron oxide nanoparticles coated with amino organosilane have been synthesized. The structural and magnetic characteristics of the resulting nanoparticles have been studied by transmission electron microscopy and ferromagnetic resonance. The surface of the synthesized nanoparticles has been chemically functionalized with lectin (concanavalin A), and the efficiency of the obtained material as a sorbent for affine exosome isolation from human urine has been demonstrated. A highly purified fraction of exosomes 90-200 nm in size has been obtained. The exosomal nature of the isolated vesicles has been confirmed by bioluminescent solid-phase microassay of tetrasporine receptor markers. The presence of exosomal miR-21 in the isolated human urine exosome samples has been established.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.