Mehmet K Samur, Anil Aktas Samur, Parth Shah, Joseph S Park, Mariateresa Fulciniti, Masood Shammas, Jill Corre, Kenneth C Anderson, Giovanni Parmigiani, Hervé Avet-Loiseau, Nikhil C Munshi
{"title":"超二倍体的发育始于幼年,需要十年才能完成。","authors":"Mehmet K Samur, Anil Aktas Samur, Parth Shah, Joseph S Park, Mariateresa Fulciniti, Masood Shammas, Jill Corre, Kenneth C Anderson, Giovanni Parmigiani, Hervé Avet-Loiseau, Nikhil C Munshi","doi":"10.1182/blood.2024025250","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Nearly half of patients with multiple myeloma (MM) have hyperdiploidy (HMM) at diagnosis. Although HMM occurs early, the mutational processes before and after hyperdiploidy are still unclear. Here, we used 72 whole-genome sequencing samples from patients with HMM and identified pre- and post-HMM mutations to define the chronology of the development of hyperdiploidy. An MM cell accumulated a median of 0.56 mutations per megabase before HMM, and for every clonal pre-HMM mutation, 1.21 mutations per megabase accumulated after HMM. This analysis using mutations before and after hyperdiploidy shows that hyperdiploidy happens after somatic hypermutation. Prehyperdiploidy mutations are activation-induced cytidine deaminase and age/clock-like signature driven, whereas posthyperdiploidy mutations are from DNA damage and APOBEC. Interestingly, the first hyperdiploidy event occurred within the first 3 decades of life and took a decade to complete. Copy number changes affecting chromosomes 15 and 19 occurred first. Finally, mutations before initiating event affected chromosomes at different rates, whereas post-initiating event mutational processes affect each chromosome equally.</p>","PeriodicalId":9102,"journal":{"name":"Blood","volume":" ","pages":"520-525"},"PeriodicalIF":21.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of hyperdiploidy starts at an early age and takes a decade to complete.\",\"authors\":\"Mehmet K Samur, Anil Aktas Samur, Parth Shah, Joseph S Park, Mariateresa Fulciniti, Masood Shammas, Jill Corre, Kenneth C Anderson, Giovanni Parmigiani, Hervé Avet-Loiseau, Nikhil C Munshi\",\"doi\":\"10.1182/blood.2024025250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Nearly half of patients with multiple myeloma (MM) have hyperdiploidy (HMM) at diagnosis. Although HMM occurs early, the mutational processes before and after hyperdiploidy are still unclear. Here, we used 72 whole-genome sequencing samples from patients with HMM and identified pre- and post-HMM mutations to define the chronology of the development of hyperdiploidy. An MM cell accumulated a median of 0.56 mutations per megabase before HMM, and for every clonal pre-HMM mutation, 1.21 mutations per megabase accumulated after HMM. This analysis using mutations before and after hyperdiploidy shows that hyperdiploidy happens after somatic hypermutation. Prehyperdiploidy mutations are activation-induced cytidine deaminase and age/clock-like signature driven, whereas posthyperdiploidy mutations are from DNA damage and APOBEC. Interestingly, the first hyperdiploidy event occurred within the first 3 decades of life and took a decade to complete. Copy number changes affecting chromosomes 15 and 19 occurred first. Finally, mutations before initiating event affected chromosomes at different rates, whereas post-initiating event mutational processes affect each chromosome equally.</p>\",\"PeriodicalId\":9102,\"journal\":{\"name\":\"Blood\",\"volume\":\" \",\"pages\":\"520-525\"},\"PeriodicalIF\":21.0000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1182/blood.2024025250\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024025250","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Development of hyperdiploidy starts at an early age and takes a decade to complete.
Abstract: Nearly half of patients with multiple myeloma (MM) have hyperdiploidy (HMM) at diagnosis. Although HMM occurs early, the mutational processes before and after hyperdiploidy are still unclear. Here, we used 72 whole-genome sequencing samples from patients with HMM and identified pre- and post-HMM mutations to define the chronology of the development of hyperdiploidy. An MM cell accumulated a median of 0.56 mutations per megabase before HMM, and for every clonal pre-HMM mutation, 1.21 mutations per megabase accumulated after HMM. This analysis using mutations before and after hyperdiploidy shows that hyperdiploidy happens after somatic hypermutation. Prehyperdiploidy mutations are activation-induced cytidine deaminase and age/clock-like signature driven, whereas posthyperdiploidy mutations are from DNA damage and APOBEC. Interestingly, the first hyperdiploidy event occurred within the first 3 decades of life and took a decade to complete. Copy number changes affecting chromosomes 15 and 19 occurred first. Finally, mutations before initiating event affected chromosomes at different rates, whereas post-initiating event mutational processes affect each chromosome equally.
期刊介绍:
Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.