基于 cAMP/PKA/CREB 通路探索卡马西平降低睾酮水平的机制

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2024-12-01 Epub Date: 2024-11-19 DOI:10.1007/s13205-024-04156-7
Jingya Li, Ziao Liu, Min Pan, Li Li, Xiaohui Tong, Yajuan Wang, Bin Chen, Tongsheng Wang
{"title":"基于 cAMP/PKA/CREB 通路探索卡马西平降低睾酮水平的机制","authors":"Jingya Li, Ziao Liu, Min Pan, Li Li, Xiaohui Tong, Yajuan Wang, Bin Chen, Tongsheng Wang","doi":"10.1007/s13205-024-04156-7","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to explore the molecular mechanisms underlying carbamazepine (CBZ)-induced testicular toxicity and testosterone reduction in rats. For this purpose, Sprague-Dawley (SD) rats were intervened with 200 mg/kg CBZ for 12 weeks, and R2C cells were exposed to CBZ at concentrations of 0.5, 1 and 1.5 mM for 24 h. HE, Tunel, ELISA, immunofluorescence staining, RT-qPCR, and western blot were used to reveal the effects of CBZ on spermatozoa quality, testicular tissue structure, testosterone level and testosterone synthesis-related enzymes in rats. The results showed that CBZ significantly damaged the testicular tissue structure of rats, induced cell apoptosis, down-regulated the gene and protein expression levels of testosterone synthesis-related enzymes (STAR, TSPO, 17β-HSD and 3β-HSD), inhibited the expression of related proteins in the cAMP/PKA/CREB signalling pathway, and suppressed testosterone levels. In addition, the use of Db-cAMP (a PKA activator) significantly upregulated the protein expressions of PKA and p-CREB, evidently alleviated the CBZ-induced decrease in testosterone levels. In conclusion, CBZ induced testosterone resynthesis by inhibiting the cAMP/PKA/CREB pathway, affecting the expression of steroid synthesis-related enzymes and reducing testosterone levels.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 12","pages":"305"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576689/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the mechanism of carbamazepine decreasing testosterone levels based on cAMP/PKA/CREB pathway.\",\"authors\":\"Jingya Li, Ziao Liu, Min Pan, Li Li, Xiaohui Tong, Yajuan Wang, Bin Chen, Tongsheng Wang\",\"doi\":\"10.1007/s13205-024-04156-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to explore the molecular mechanisms underlying carbamazepine (CBZ)-induced testicular toxicity and testosterone reduction in rats. For this purpose, Sprague-Dawley (SD) rats were intervened with 200 mg/kg CBZ for 12 weeks, and R2C cells were exposed to CBZ at concentrations of 0.5, 1 and 1.5 mM for 24 h. HE, Tunel, ELISA, immunofluorescence staining, RT-qPCR, and western blot were used to reveal the effects of CBZ on spermatozoa quality, testicular tissue structure, testosterone level and testosterone synthesis-related enzymes in rats. The results showed that CBZ significantly damaged the testicular tissue structure of rats, induced cell apoptosis, down-regulated the gene and protein expression levels of testosterone synthesis-related enzymes (STAR, TSPO, 17β-HSD and 3β-HSD), inhibited the expression of related proteins in the cAMP/PKA/CREB signalling pathway, and suppressed testosterone levels. In addition, the use of Db-cAMP (a PKA activator) significantly upregulated the protein expressions of PKA and p-CREB, evidently alleviated the CBZ-induced decrease in testosterone levels. In conclusion, CBZ induced testosterone resynthesis by inhibiting the cAMP/PKA/CREB pathway, affecting the expression of steroid synthesis-related enzymes and reducing testosterone levels.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"14 12\",\"pages\":\"305\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576689/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04156-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04156-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探索卡马西平(CBZ)诱导大鼠睾丸毒性和睾酮减少的分子机制。研究采用HE、Tunel、ELISA、免疫荧光染色、RT-qPCR和Western blot等方法揭示了CBZ对大鼠精子质量、睾丸组织结构、睾酮水平和睾酮合成相关酶的影响。结果表明,CBZ能明显破坏大鼠的睾丸组织结构,诱导细胞凋亡,下调睾酮合成相关酶(STAR、TSPO、17β-HSD和3β-HSD)的基因和蛋白表达水平,抑制cAMP/PKA/CREB信号通路中相关蛋白的表达,抑制睾酮水平。此外,使用 Db-cAMP(一种 PKA 激活剂)可显著上调 PKA 和 p-CREB 蛋白表达,明显缓解 CBZ 诱导的睾酮水平下降。总之,CBZ 通过抑制 cAMP/PKA/CREB 通路,影响类固醇合成相关酶的表达,从而诱导睾酮的再合成,降低睾酮水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the mechanism of carbamazepine decreasing testosterone levels based on cAMP/PKA/CREB pathway.

The aim of this study was to explore the molecular mechanisms underlying carbamazepine (CBZ)-induced testicular toxicity and testosterone reduction in rats. For this purpose, Sprague-Dawley (SD) rats were intervened with 200 mg/kg CBZ for 12 weeks, and R2C cells were exposed to CBZ at concentrations of 0.5, 1 and 1.5 mM for 24 h. HE, Tunel, ELISA, immunofluorescence staining, RT-qPCR, and western blot were used to reveal the effects of CBZ on spermatozoa quality, testicular tissue structure, testosterone level and testosterone synthesis-related enzymes in rats. The results showed that CBZ significantly damaged the testicular tissue structure of rats, induced cell apoptosis, down-regulated the gene and protein expression levels of testosterone synthesis-related enzymes (STAR, TSPO, 17β-HSD and 3β-HSD), inhibited the expression of related proteins in the cAMP/PKA/CREB signalling pathway, and suppressed testosterone levels. In addition, the use of Db-cAMP (a PKA activator) significantly upregulated the protein expressions of PKA and p-CREB, evidently alleviated the CBZ-induced decrease in testosterone levels. In conclusion, CBZ induced testosterone resynthesis by inhibiting the cAMP/PKA/CREB pathway, affecting the expression of steroid synthesis-related enzymes and reducing testosterone levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信