{"title":"盐碱土壤中稳定污泥驱动的修复机制:从排盐能力和微生物介导的碳/氮循环中获得新启示。","authors":"Jun Gao, Haining Tian, Bin Dong, Zuxin Xu","doi":"10.1016/j.scitotenv.2024.177588","DOIUrl":null,"url":null,"abstract":"<p><p>Stabilized sludge products (SSP) are promising conditioners for saline-alkali soils, capable of enhancing soil physicochemical properties and stimulating microbial communities. However, there is limited knowledge regarding the effects of SSP on soil salt-discharge capacity and carbon/nitrogen cycles. Here, a six-month incubation experiment was conducted to evaluate SSP (0 % ~ 60 %) on saline-alkali soil properties, salt leaching, and microbial functions. It was found that after SSP (≥30 %) treatment, saline-alkali soils were significantly remediated (p < 0.01), with organic matter increasing by 5.3-9.8 times, nutrient levels rising to first-grade, porosity improving by 34.3 % ~ 93.3 %, and meso/macro-aggregates content increasing by 39.0 % ~ 201.3 %. The Na<sup>+</sup> leaching rate increased from 1.1 % to 53.3 % ~ 79.3 %, indicating a substantial improvement in salt-discharge capacity. Correlation analysis revealed that SSP organics loosened pore spaces by promoting soil particle agglomeration, which in turn improved salt-discharge capacity. Further, the 30 % SSP significantly increased the microbial functions involved in nutrient cycling, such as carbon fixation (photosynthetic pathway), nitrogen fixation, dissimilatory nitrate reduction, and nitrification (p < 0.01). Contribution analysis implied that the up-regulation of gene abundance assigned to carbon/nitrogen cycle was attributed to balancing effect of SSP on dominant genera. Finally, the excellent growth of alfalfa seedlings verified the soil productivity restoration of degraded saline-alkali soils. These findings provide new insights into salt stress alleviation and nutrient cycling in degraded saline-alkali soils.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177588"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of stabilized sludge-driven remediation in saline-alkali soil: New insights from salt-discharge capacity and microbially mediated carbon/nitrogen cycles.\",\"authors\":\"Jun Gao, Haining Tian, Bin Dong, Zuxin Xu\",\"doi\":\"10.1016/j.scitotenv.2024.177588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stabilized sludge products (SSP) are promising conditioners for saline-alkali soils, capable of enhancing soil physicochemical properties and stimulating microbial communities. However, there is limited knowledge regarding the effects of SSP on soil salt-discharge capacity and carbon/nitrogen cycles. Here, a six-month incubation experiment was conducted to evaluate SSP (0 % ~ 60 %) on saline-alkali soil properties, salt leaching, and microbial functions. It was found that after SSP (≥30 %) treatment, saline-alkali soils were significantly remediated (p < 0.01), with organic matter increasing by 5.3-9.8 times, nutrient levels rising to first-grade, porosity improving by 34.3 % ~ 93.3 %, and meso/macro-aggregates content increasing by 39.0 % ~ 201.3 %. The Na<sup>+</sup> leaching rate increased from 1.1 % to 53.3 % ~ 79.3 %, indicating a substantial improvement in salt-discharge capacity. Correlation analysis revealed that SSP organics loosened pore spaces by promoting soil particle agglomeration, which in turn improved salt-discharge capacity. Further, the 30 % SSP significantly increased the microbial functions involved in nutrient cycling, such as carbon fixation (photosynthetic pathway), nitrogen fixation, dissimilatory nitrate reduction, and nitrification (p < 0.01). Contribution analysis implied that the up-regulation of gene abundance assigned to carbon/nitrogen cycle was attributed to balancing effect of SSP on dominant genera. Finally, the excellent growth of alfalfa seedlings verified the soil productivity restoration of degraded saline-alkali soils. These findings provide new insights into salt stress alleviation and nutrient cycling in degraded saline-alkali soils.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"177588\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.177588\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177588","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Mechanism of stabilized sludge-driven remediation in saline-alkali soil: New insights from salt-discharge capacity and microbially mediated carbon/nitrogen cycles.
Stabilized sludge products (SSP) are promising conditioners for saline-alkali soils, capable of enhancing soil physicochemical properties and stimulating microbial communities. However, there is limited knowledge regarding the effects of SSP on soil salt-discharge capacity and carbon/nitrogen cycles. Here, a six-month incubation experiment was conducted to evaluate SSP (0 % ~ 60 %) on saline-alkali soil properties, salt leaching, and microbial functions. It was found that after SSP (≥30 %) treatment, saline-alkali soils were significantly remediated (p < 0.01), with organic matter increasing by 5.3-9.8 times, nutrient levels rising to first-grade, porosity improving by 34.3 % ~ 93.3 %, and meso/macro-aggregates content increasing by 39.0 % ~ 201.3 %. The Na+ leaching rate increased from 1.1 % to 53.3 % ~ 79.3 %, indicating a substantial improvement in salt-discharge capacity. Correlation analysis revealed that SSP organics loosened pore spaces by promoting soil particle agglomeration, which in turn improved salt-discharge capacity. Further, the 30 % SSP significantly increased the microbial functions involved in nutrient cycling, such as carbon fixation (photosynthetic pathway), nitrogen fixation, dissimilatory nitrate reduction, and nitrification (p < 0.01). Contribution analysis implied that the up-regulation of gene abundance assigned to carbon/nitrogen cycle was attributed to balancing effect of SSP on dominant genera. Finally, the excellent growth of alfalfa seedlings verified the soil productivity restoration of degraded saline-alkali soils. These findings provide new insights into salt stress alleviation and nutrient cycling in degraded saline-alkali soils.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.