盐碱土壤中稳定污泥驱动的修复机制:从排盐能力和微生物介导的碳/氮循环中获得新启示。

IF 8 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Science of the Total Environment Pub Date : 2024-12-20 Epub Date: 2024-11-23 DOI:10.1016/j.scitotenv.2024.177588
Jun Gao, Haining Tian, Bin Dong, Zuxin Xu
{"title":"盐碱土壤中稳定污泥驱动的修复机制:从排盐能力和微生物介导的碳/氮循环中获得新启示。","authors":"Jun Gao, Haining Tian, Bin Dong, Zuxin Xu","doi":"10.1016/j.scitotenv.2024.177588","DOIUrl":null,"url":null,"abstract":"<p><p>Stabilized sludge products (SSP) are promising conditioners for saline-alkali soils, capable of enhancing soil physicochemical properties and stimulating microbial communities. However, there is limited knowledge regarding the effects of SSP on soil salt-discharge capacity and carbon/nitrogen cycles. Here, a six-month incubation experiment was conducted to evaluate SSP (0 % ~ 60 %) on saline-alkali soil properties, salt leaching, and microbial functions. It was found that after SSP (≥30 %) treatment, saline-alkali soils were significantly remediated (p < 0.01), with organic matter increasing by 5.3-9.8 times, nutrient levels rising to first-grade, porosity improving by 34.3 % ~ 93.3 %, and meso/macro-aggregates content increasing by 39.0 % ~ 201.3 %. The Na<sup>+</sup> leaching rate increased from 1.1 % to 53.3 % ~ 79.3 %, indicating a substantial improvement in salt-discharge capacity. Correlation analysis revealed that SSP organics loosened pore spaces by promoting soil particle agglomeration, which in turn improved salt-discharge capacity. Further, the 30 % SSP significantly increased the microbial functions involved in nutrient cycling, such as carbon fixation (photosynthetic pathway), nitrogen fixation, dissimilatory nitrate reduction, and nitrification (p < 0.01). Contribution analysis implied that the up-regulation of gene abundance assigned to carbon/nitrogen cycle was attributed to balancing effect of SSP on dominant genera. Finally, the excellent growth of alfalfa seedlings verified the soil productivity restoration of degraded saline-alkali soils. These findings provide new insights into salt stress alleviation and nutrient cycling in degraded saline-alkali soils.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177588"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of stabilized sludge-driven remediation in saline-alkali soil: New insights from salt-discharge capacity and microbially mediated carbon/nitrogen cycles.\",\"authors\":\"Jun Gao, Haining Tian, Bin Dong, Zuxin Xu\",\"doi\":\"10.1016/j.scitotenv.2024.177588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stabilized sludge products (SSP) are promising conditioners for saline-alkali soils, capable of enhancing soil physicochemical properties and stimulating microbial communities. However, there is limited knowledge regarding the effects of SSP on soil salt-discharge capacity and carbon/nitrogen cycles. Here, a six-month incubation experiment was conducted to evaluate SSP (0 % ~ 60 %) on saline-alkali soil properties, salt leaching, and microbial functions. It was found that after SSP (≥30 %) treatment, saline-alkali soils were significantly remediated (p < 0.01), with organic matter increasing by 5.3-9.8 times, nutrient levels rising to first-grade, porosity improving by 34.3 % ~ 93.3 %, and meso/macro-aggregates content increasing by 39.0 % ~ 201.3 %. The Na<sup>+</sup> leaching rate increased from 1.1 % to 53.3 % ~ 79.3 %, indicating a substantial improvement in salt-discharge capacity. Correlation analysis revealed that SSP organics loosened pore spaces by promoting soil particle agglomeration, which in turn improved salt-discharge capacity. Further, the 30 % SSP significantly increased the microbial functions involved in nutrient cycling, such as carbon fixation (photosynthetic pathway), nitrogen fixation, dissimilatory nitrate reduction, and nitrification (p < 0.01). Contribution analysis implied that the up-regulation of gene abundance assigned to carbon/nitrogen cycle was attributed to balancing effect of SSP on dominant genera. Finally, the excellent growth of alfalfa seedlings verified the soil productivity restoration of degraded saline-alkali soils. These findings provide new insights into salt stress alleviation and nutrient cycling in degraded saline-alkali soils.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"177588\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.177588\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177588","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

稳定污泥产品(SSP)是一种很有前景的盐碱土壤改良剂,能够提高土壤理化性质并刺激微生物群落。然而,人们对 SSP 对土壤排盐能力和碳/氮循环的影响了解有限。在此,我们进行了为期 6 个月的培养实验,以评估 SSP(0 % ~ 60 %)对盐碱地土壤性质、盐浸出和微生物功能的影响。结果发现,经过 SSP(≥30 %)处理后,盐碱土得到了明显的修复(p + 沥滤率从 1.1 % 提高到 53.3 % ~ 79.3 %,表明排盐能力得到了大幅提高)。相关分析表明,SSP 有机物通过促进土壤颗粒团聚来疏松孔隙,从而提高了排盐能力。此外,30% 的 SSP 能显著提高微生物在养分循环中的功能,如碳固定(光合作用途径)、氮固定、硝酸盐异纤还原和硝化(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanism of stabilized sludge-driven remediation in saline-alkali soil: New insights from salt-discharge capacity and microbially mediated carbon/nitrogen cycles.

Stabilized sludge products (SSP) are promising conditioners for saline-alkali soils, capable of enhancing soil physicochemical properties and stimulating microbial communities. However, there is limited knowledge regarding the effects of SSP on soil salt-discharge capacity and carbon/nitrogen cycles. Here, a six-month incubation experiment was conducted to evaluate SSP (0 % ~ 60 %) on saline-alkali soil properties, salt leaching, and microbial functions. It was found that after SSP (≥30 %) treatment, saline-alkali soils were significantly remediated (p < 0.01), with organic matter increasing by 5.3-9.8 times, nutrient levels rising to first-grade, porosity improving by 34.3 % ~ 93.3 %, and meso/macro-aggregates content increasing by 39.0 % ~ 201.3 %. The Na+ leaching rate increased from 1.1 % to 53.3 % ~ 79.3 %, indicating a substantial improvement in salt-discharge capacity. Correlation analysis revealed that SSP organics loosened pore spaces by promoting soil particle agglomeration, which in turn improved salt-discharge capacity. Further, the 30 % SSP significantly increased the microbial functions involved in nutrient cycling, such as carbon fixation (photosynthetic pathway), nitrogen fixation, dissimilatory nitrate reduction, and nitrification (p < 0.01). Contribution analysis implied that the up-regulation of gene abundance assigned to carbon/nitrogen cycle was attributed to balancing effect of SSP on dominant genera. Finally, the excellent growth of alfalfa seedlings verified the soil productivity restoration of degraded saline-alkali soils. These findings provide new insights into salt stress alleviation and nutrient cycling in degraded saline-alkali soils.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信